Einj
- 464
- 59
Homework Statement
Consider a potential function V(x) such that:
$$
\begin{cases}
V(x)\leq 0\text{ for }x\in[-x_0,x_0] \\
V(x)=0 \text{ for }x\not\in[-x_0,x_0]
\end{cases}
$$
Show, using the variational method that:
(a) In the 1-dimensional case \lambda^2V(x) always possesses at least one bound state.
(b) In the 3-dimensional spherically symmetric case, V(|\vec r|), it possesses no bound states if \lambda^2 is made sufficiently small.
2. The attempt at a solution
The idea is to use the variational method, i.e.:
$$
\frac{\langle\psi|H|\psi\rangle}{\langle \psi|\psi\rangle}\geq E_{ground},
$$
to show that the average value of the energy is negative and hence the ground state energy is negative.
In my first attempt I used a gaussian trial function:
$$
\psi(x)=\left(\frac{2a}{\pi}\right)^{1/4}e^{-ax^2}.
$$
However the problem is that it turns out that the average value of the kinetic energy is \hbar^2a/2m and so, in order to determine whether the average energy is negative or not we need to know a explicitly. However, this is not possible since we have no insight on the actual shape of the potential.
It seems to me that this thing will turn out to be a problem for every trial function. How can I do that?
Thank you