braindead101
- 158
- 0
Show the following properties of convex hull:
(a) Co(CoA) = Co(A)
(b) Co(AUB) \supseteqCo(A) U Co(B)
(c) If A\subseteqB then Co(AUB)=Co(B)
(d) If A\subseteqB then Co(A)\subseteqCo(B)
The definition of a convex hull is a set of points A is the minimum convex set containing A.
(c) is quite trivial and i can get it.
but i am wondering about (a) and (b) and (d), anyone know if (d) is proven using (b) and (c) or is there another method of doing it.
I am having difficulty explaining (a), I think i understand why they are equal.. it is quite obvious, but i can't explain it well.
and as for (b) i am also lost for words for the explanation
any help would be greatly appreciated
(a) Co(CoA) = Co(A)
(b) Co(AUB) \supseteqCo(A) U Co(B)
(c) If A\subseteqB then Co(AUB)=Co(B)
(d) If A\subseteqB then Co(A)\subseteqCo(B)
The definition of a convex hull is a set of points A is the minimum convex set containing A.
(c) is quite trivial and i can get it.
but i am wondering about (a) and (b) and (d), anyone know if (d) is proven using (b) and (c) or is there another method of doing it.
I am having difficulty explaining (a), I think i understand why they are equal.. it is quite obvious, but i can't explain it well.
and as for (b) i am also lost for words for the explanation
any help would be greatly appreciated