In my econ homework, I was asked to prove that:(adsbygoogle = window.adsbygoogle || []).push({});

A set C is convex iff a C + b C = (a+b) C for all nonnegative scalars a and b.

All that I'm given is that the definition of a convex set is, for x,y elements of a convex set C:

(1-a) x + a y exists in C, for 0<a<1

My thoughts were to first prove it in the forward direction. So suppose C convex. Then a C + b C = {ax+by : x,y exist in C}. Somehow I need to get this to a C + b C = {(a+b) x : x exist in C}. I'm not seeing how to do this using the definition of a convex set. I can see why this is true geometrically by noting the set a C + b C is simply the b C superimposed on a bunch a C's on the edge, so the new "radius" becomes a+b but this isn't rigorous.

I have already proved that if a set C is convex then for every finite subset and nonegative scalars that sum to 1, the linear combination is also in C; that teh sum of two convex sets is convex, and that scalar multiples of convex sets are convex, so I can use those properties but I don't think they help.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Having trouble proving a property of convex sets:

**Physics Forums | Science Articles, Homework Help, Discussion**