Vector differential displacement - Magnetic vector potential

AI Thread Summary
The discussion focuses on calculating the vector magnetic potential at a specific point using the formula for vector magnetic potential. The user breaks down the problem into three parts, addressing the potential along the x-axis and y-axis, and expresses confusion regarding the vector differential displacement, particularly how it varies with direction during integration. It is clarified that the differential displacement vector depends on the direction of integration, which is influenced by the current's direction. Additionally, the relationship between the current's direction and the integration process is emphasized, noting that the current can indeed take on negative values, affecting the calculations. Understanding these concepts is crucial for correctly applying the vector potential formula in different scenarios.
italy55
Messages
2
Reaction score
0

Homework Statement



http://imgur.com/a/k7fwG
Find the vector magnetic potential at point P1.

Homework Equations


Vector magnetic potential given by:
$$
d \bar{A} = \frac{\mu I d\bar{l'}}{4 \pi | \bar{r} - \bar{r'} | }
$$

The Attempt at a Solution


I split up the problem in 3 parts,

first solve for potential along the x-axis:
$$ A_x= \frac{\mu I }{4 \pi } \int \frac{\mu I d\bar{l'}}{4 \pi | \bar{r} - \bar{r'} | } = \frac{\mu I }{4 \pi } ln(sqrt(2) +1) $$
$$ \bar{r} =(a,a,0) , \bar{r'} = (x',0,0) , \bar{dl'} = \bar{e_x} dx'
$$

second, I guess this one is the same except the sign:
$$ A_y= \frac{\mu I }{4 \pi } \int \frac{\mu I d\bar{l'}}{4 \pi | \bar{r} - \bar{r'} | } = - \frac{\mu I }{4 \pi } ln(sqrt(2) +1) $$
in the first one, I put $$ \bar{r} =(a,a,0) , \bar{r'} = (0,y',0) , \bar{dl'} = - \bar{e_y} dy' (wrong??)
$$

-----------------

My questions is about the vector differential displacement $$ \bar{dl'} $$, how does the vector differential displacement change between the first, second and the third one?

I'm confused in this part because my formula sheet says that $$ \bar{dl'} = \bar{e_x} dx + \bar{e_y} dy + \bar{e_z} dz $$

How should I think when using the vector differential displacement in the 3 different cases?
 
Physics news on Phys.org
You have to do three integrals, one for each side of the triangle. This means that you should write three differential displacements. For example, the one along the hypotenuse is ##d \vec{l}_{hyp.}= - \frac{1}{\sqrt{2} }\hat{e}_x dx + \frac{1}{\sqrt{2} }\hat{e}_y dy.## Stick it in the integral and integrate. The unit vectors help keep track of the components. The other two differentials should be easier.
 
kuruman said:
You have to do three integrals, one for each side of the triangle. This means that you should write three differential displacements. For example, the one along the hypotenuse is ##d \vec{l}_{hyp.}= - \frac{1}{\sqrt{2} }\hat{e}_x dx + \frac{1}{\sqrt{2} }\hat{e}_y dy.## Stick it in the integral and integrate. The unit vectors help keep track of the components. The other two differentials should be easier.

yes thanks, I'm aware of that I should split it up into 3 integrals. Just a bit confused about the "differential displacement vector".

So the differential displacement depends on which direction I integrate(direction the current is going?)? For example "$$ \bar{dl'} = \bar{e_x} dx + \bar{e_y} dy + \bar{e_z} dz $$" is not always like "a constant" in cartesian coordinates, instead it depends on the direction of integration, correct?

and a question about the direction of the current "I", does this decide only in which direction I should integrate or can the current become negative somehow(for examplel -I )?
 
italy55 said:
So the differential displacement depends on which direction I integrate(direction the current is going?)? For example "
¯dl′=¯exdx+¯eydy+¯ezdz​
\bar{dl'} = \bar{e_x} dx + \bar{e_y} dy + \bar{e_z} dz " is not always like "a constant" in cartesian coordinates, instead it depends on the direction of integration, correct?

and a question about the direction of the current "I", does this decide only in which direction I should integrate or can the current become negative somehow(for examplel -I )?

The two questions you ask are related. Perhaps you will be able to answer them yourself if you consider that the more general expression for the vector potential is
$$\vec{A}(\vec{r}) =\frac {\mu_0}{4 \pi} \int { \frac{\vec{J}(\vec{r}')}{|\vec{r}-\vec{r}'|} dV'} $$
where ##\vec{J}(\vec{r}')## is the current density. In the special case of a current loop ##\vec{J}(\vec{r}')~dV' \rightarrow I d\vec{l}'##.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top