MHB How to Express Vectors of a Regular Hexagon in Terms of Given Components?

AI Thread Summary
The discussion focuses on expressing the vectors of a regular hexagon in terms of given components, specifically $\vec{AB}$, $\vec{CD}$, and $\vec{EC}$. It clarifies that $\vec{b}$ represents the vector $\overrightarrow{BC}$ and $2\vec{a}$ represents $\overrightarrow{FC}$. The expressions derived are $\vec{AB} = \vec{a}$, $\vec{CD} = \vec{b} - \vec{a}$, and $\vec{EC} = 2\vec{a} - \vec{b}$. Participants also discuss the potential confusion around the notation used for vectors. Ultimately, the problem is recognized as straightforward with proper geometric understanding.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
ABCDEF is a regular hexagon with $\vec {BC}$ represents $\underline {b}$ and $\vec {FC}$ represents 2$\underline {a}$. Express, vector
$\vec {AB}$, $\vec {CD}$ and $\vec {EC}$ in terms of $\underline {a}$ and $\underline {b}$.

Before I start, I want to ask if we need to redefined $\underline {b}$ and 2$\underline {a}$? I mean, let $\underline {b}$ as

$$\begin{pmatrix} m \\0 \end{pmatrix}$$.

Thanks.
 
Mathematics news on Phys.org
You don't have to express $\underline{a}$ and $\underline{b}$ using their coordinates, though it's possible to get the answer that way as well. Suppose $\underline{a}=(k,l)$ and $\underline{b}=(m,0)$ and you express, say, $\vec{AB}$ using k, l and m. The difficulty is that you need express $\vec{AB}$ as a combination of specifically $(k,l)$ and $(m,0)$, not just as some expression of k, l and m.

It is clear that $\vec{EC}=\vec{FB}=\vec{FC}-\vec{BC}=2\underline{a}-\underline{b}$. To get a geometric intuition about the regular hexagon you can also look at this page.
 
Hello, anemone!

I don't understand the notation $\underline{b}$.
If $\underline{b}$ represents $\overrightarrow{BC}$, isn't $b$ also a vector?

$ABCDEF\text{ is a regular hexagon with }\vec{b} = \overrightarrow {BC}\text{ and }2\vec{a} = \overrightarrow{FC} $

$\text{Express vectors }\overrightarrow{AB},\;\overrightarrow{CD},\; \overrightarrow{EC}\text{ in terms of }\vec{a}\text{ and }\vec{b}.$
Code:
          A       B
          * - - - *
         / \     / \
        /   \   /   \ b
       /  a  \ /  a  \
    F * - - - * - - - * C
       \     / \     /
        \   /   \   /
         \ /     \ /
          * - - - *
          E       D

$\overrightarrow{AB} \:=\:\vec{a}$

$\overrightarrow{CD} \:=\:\vec{b} - \vec{a}$

$\overrightarrow{EC} \:=\:2\vec{a} - \vec{b}$
 
Evgeny.Makarov said:
You don't have to express $\underline{a}$ and $\underline{b}$ using their coordinates, though it's possible to get the answer that way as well. Suppose $\underline{a}=(k,l)$ and $\underline{b}=(m,0)$ and you express, say, $\vec{AB}$ using k, l and m. The difficulty is that you need express $\vec{AB}$ as a combination of specifically $(k,l)$ and $(m,0)$, not just as some expression of k, l and m.

It is clear that $\vec{EC}=\vec{FB}=\vec{FC}-\vec{BC}=2\underline{a}-\underline{b}$. To get a geometric intuition about the regular hexagon you can also look at this page.

Got it. Thanks, Evgeny.Makarov.
Maybe I'm just trying too hard...and not knowing that I'm actually trying to complicate the simple problem.

---------- Post added at 06:05 AM ---------- Previous post was at 05:59 AM ----------

soroban said:
I don't understand the notation $\underline{b}$.
If $\underline{b}$ represents $\overrightarrow{BC}$, isn't $b$ also a vector?

I had the same reaction as you when I first read the problem!
Anyway, thanks, Soroban.
Now I fully understand with the help of the diagram and it really is as simple as that.:)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top