Vector potential of current flowing to a point from all directions

AI Thread Summary
The discussion centers on the challenges of finding the vector potential \( A \) for a current flowing to a point, particularly in relation to the volume integral setup. The integral presented lacks the necessary factor \( \frac{1}{|\mathbf{r}-\mathbf{r'}|} \), leading to confusion about its upper bound and resulting in \( A \) potentially equating to zero. The conversation emphasizes that in the Coulomb gauge, the vector potential can be zero if the transverse component of the current density \( \mathbf{J_t} \) is also zero. Additionally, it highlights the importance of using retarded times in the context of time-dependent fields and currents. The conclusion reinforces that the integral's formulation is crucial for accurately determining the vector potential.
RedDeer44
Messages
3
Reaction score
1
Homework Statement
This is from Griffith , Introduction to Electrodynamics 4th Edition question 10.7

A time-dependent point charge q(t) at the origin, ##\rho(r, t) = q(t)\delta^3(r)##, is fed by a current ##J(r, t) = −\frac{1}{4π} \frac{\dot q}{r^2}) \hat r##
(a) Check that charge is conserved, by confirming that the continuity equation is obeyed.
(b) Find the scalar and vector potentials in the Coulomb gauge. If you get stuck, try working on (c) first.
(c) Find the fields, and check that they satisfy all of Maxwell’s equations.
Relevant Equations
$$A = \frac{\mu_0}{4\pi}\int \frac{ J}{|r-r'|}d^3r'$$
$$J = −\frac{1}{4π} \frac{\dot q}{r^2}) \hat r$$
I am having problem with part (b) finding the vector potential. More specifically when writing out the volume integral,
$$A = \frac{\mu_0}{4\pi r}\frac{dq}{dt}\int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{?}\frac{1}{4\pi r'^2} r'^2sin\theta dr'd\theta d\phi$$
How do I integrate ##r'##?

The solution says because ##B## can only have ##r## component and only depend on ##r## and ##t## due to symmetry, and ##\nabla \cdot B = 0##, ##B = \nabla \times A = 0## also by using coulomb gauge we set ## \nabla\cdot A = 0##, ##A=0## or it could be any constant.
The argument makes sense to me, but I am not sure what is wrong with the integral, and how does it end up with 0.
 
  • Like
Likes Delta2
Physics news on Phys.org
When you setup the integral,
$$
\mathbf{A }(\mathbf{r})= \frac{\mu_0}{4\pi}\int \frac{ \mathbf{ J}(\mathbf{r'})}{|\mathbf{r}-\mathbf{r'}|}d^3r'
$$
you left out the factor ##\frac{1}{|\mathbf{r}-\mathbf{r'}|}## in the integrand. The integral is messy.
 
Last edited:
  • Like
Likes Delta2
jasonRF said:
When you setup the integral,
$$
\mathbf{A }(\mathbf{r})= \frac{\mu_0}{4\pi}\int \frac{ \mathbf{ J}(\mathbf{r'})}{|\mathbf{r}-\mathbf{r'}|}d^3r'
$$
you left out the factor ##\frac{1}{|\mathbf{r}-\mathbf{r'}|}## in the integrand. The integral is messy.
Yes that's right. I'd fix it but I can't seem to edit it anymore. The correct integral should have an extra ##\frac{1}{r'}## factor in it, but I am still not sure what is the upper bound of integral so that it come out to be a constant.
 
RedDeer44 said:
Homework Equations: $$A = \frac{\mu_0}{4\pi}\int \frac{ J}{|r-r'|}d^3r'$$
This equation is not valid in general when you have time-dependent fields and currents. In the Lorentz gauge (also called Lorenz gauge) there is a similar formula for A except the integrand is evaluated at "retarded times". But, you want A in the Coulomb gauge. In this gauge, it can be shown that $$\mathbf{A}(\mathbf r) = \frac{\mu_0}{4\pi}\int \frac{\mathbf{J_t}(\mathbf{r}', t_r)}{|\mathbf{r}-\mathbf{r'}|}d^3r'$$where again you use retarded times ##t_r##, but the integrand involves only the so-called "transverse component" ##\mathbf{J_t}## of ##\mathbf{J}##. If you want to read more about this, see section 5.2 here. For your problem ##\mathbf{J_t}=0##, which is consistent with ##\mathbf{A} = 0## in the Coulomb gauge for this particular problem.
 
  • Like
Likes vanhees71, RedDeer44 and Delta2
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top