Vector space for cross products?

pivoxa15
Messages
2,250
Reaction score
1
What vector space are cross products done in?
 
Physics news on Phys.org
If you're talking about the standard definition, it's only defined for vectors in three dimensions, so anything that has three dimensions you could do the cross product in. Why?

It occurs to me that I think there's a more general form for other dimensions, but I don't know it
 
A more general definition is this: Let \epsilon_{ijk...m} be the "alternating tensor" in m dimensions: +1 if ijk...m is an even permutation of 123...n, -1 if an odd permutation, 0 otherwise. Then we can define the "cross product" of n-1 vectors v_1, v_2, ..., v_{n-1} to be the vector v= \Sigma \epsilon_{ij...m}v_{1i}v_{2j}...v_{n-1,m} where the sum is take over repeated indices. If n= 3 then that gives the cross product on R2.
 
given n-1 vectors in n dimensions, let them act on another vector w by taking the detrminant of the mtrix the n vectors form togetehjr. that gives alinear \map of w, which is thus dotting with aunique vector caled the cross product of the first n-1 vectors.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top