Vector space of functions defined by a condition

Click For Summary

Homework Help Overview

The discussion revolves around the vector space of continuous functions defined on the interval [0, 2], with specific piecewise definitions for the function f. Participants are exploring the basis for this vector space, denoted as V, which consists of functions defined differently on the intervals [0, 1] and [1, 2]. The original poster questions how to combine the bases from each interval and whether the dimension of V can be determined without explicitly finding the basis.

Discussion Character

  • Exploratory, Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants discuss the need to find a set of functions that can construct any function in V. There are suggestions about defining functions that change based on the interval of x, and some participants express uncertainty about whether certain functions qualify as basis vectors. The continuity condition at x=1 is also a focal point of discussion, raising questions about the implications for the coefficients involved.

Discussion Status

The discussion is ongoing, with various participants offering different functions as potential basis elements. Some have pointed out that certain proposed functions do not meet the continuity requirement at x=1, while others are attempting to clarify the conditions necessary for functions to belong to V. There is a recognition of the need for linear independence among the functions being considered.

Contextual Notes

Participants are working under the constraint that the functions must be continuous across the defined intervals, which imposes specific conditions on the coefficients of the piecewise definitions. There is also an emphasis on ensuring that the functions are defined piecewise to align with the structure of V.

Hall
Messages
351
Reaction score
87
Homework Statement
Main body is to be referred.
Relevant Equations
Main body should be referred.
##f : [0,2] \to R##. ##f## is continuous and is defined as follows:
$$
f = ax^2 + bx ~~~~\text{ if x belongs to [0,1]}$$
$$
f(x)= Ax^3 + Bx^2 + Cx +D ~~~~\text{if x belongs to [1,2]}$$

##V = \text{space of all such f}##

What would the basis for V? Well, for ##x \in [0,1]## the basis for ##V## (or those f’s can be constructed) is ##\{x, x^2\}##, and for ##x\in [1,2]## the basis for ##V## is ##\{x^3, x^2, x, 1\}##. I wonder how to combine it, and can I find the dimension of V without finding the basis for V?
 
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
To construct a basis you need to find a set of functions that belong to your vector space from which any other function in the vector space can be constructed. What have you thought of doing so far?
 
I think the basis of this V is some functions that also change formula depending on where x belongs. I got some idea but I ll explain further if this hint is not enough.
 
  • Like
Likes   Reactions: Hall
Hall said:
Homework Statement:: Main body is to be referred.
Relevant Equations:: Main body should be referred.

##f : [0,2] \to R##. ##f## is continuous and is defined as follows:
$$
f = ax^2 + bx ~~~~\text{ if x belongs to [0,1]}$$
$$
f(x)= Ax^3 + Bx^2 + Cx +D ~~~~\text{if x belongs to [1,2]}$$

##V = \text{space of all such f}##

What would the basis for V? Well, for ##x \in [0,1]## the basis for ##V## (or those f’s can be constructed) is ##\{x, x^2\}##, and for ##x\in [1,2]## the basis for ##V## is ##\{x^3, x^2, x, 1\}##. I wonder how to combine it, and can I find the dimension of V without finding the basis for V?

On the face of it, six real numbers are required to specify f: (a,b,A,B,C,D). But f must be continuous at 1. What condition does that impose on (a,b,A,B,C,D)?
 
pasmith said:
On the face of it, six real numbers are required to specify f: (a,b,A,B,C,D). But f must be continuous at 1. What condition does that impose on (a,b,A,B,C,D)?
##f(1)=f(1)##
##a+ b = A + B + C +D##
##a = A +B +C +D -b##
Only 5 of them are independent.
 
Delta2 said:
I think the basis of this V is some functions that also change formula depending on where x belongs. I got some idea but I ll explain further if this hint is not enough.
How about this:
$$
\text{Basis} = \{x , x^2\} ~~~~~\text{if x belongs to [0,1]}$$

$$
\text{Basis} = \{1, x, x^2, x^3\} ~~~~\text{if x belongs to [1,2]}$$
 
  • Wow
Likes   Reactions: PeroK and Delta2
Hall said:
How about this:
$$
\text{Basis} = \{x , x^2\} ~~~~~\text{if x belongs to [0,1]}$$

$$
\text{Basis} = \{1, x, x^2, x^3\} ~~~~\text{if x belongs to [1,2]}$$
No I don't mean that unfortunately.
I mean to define some functions like for example ##f_3:[0,2]\to R## with $$f_3(x)=0 ,x\in [0,1]$$$$f_3(x)=x^3,x\in [1,2] $$and then it is obvious at least to me that this ##f_3## is one of the basis vectors of V.
 
Delta2 said:
No I don't mean that unfortunately.
I mean to define some functions like for example ##f_3:[0,2]\to R## with $$f_3(x)=0 ,x\in [0,1]$$$$f_3(x)=x^3,x\in [1,2] $$and then it is obvious at least to me that this ##f_3## is one of the basis vectors of V.
I’m sorry I’m unable to grasp the concept, but let me try once again:
$$
f_3(x) = x^2 +x ~~~~x \in [0,1]$$
$$
f_3(x) = x^3 +x^2 +x +1 ~~~~ x\in [1,2]$$
 
Hall said:
I’m sorry I’m unable to grasp the concept, but let me try once again:
$$
f_3(x) = x^2 +x ~~~~x \in [0,1]$$
$$
f_3(x) = x^3 +x^2 +x +1 ~~~~ x\in [1,2]$$
hmm I am not sure if this ##f_3## qualifies as basis for V let me think...
 
  • #10
Well it seems that ##f_3## of yours generates a subspace of V.
 
  • Like
Likes   Reactions: Hall
  • #11
Can you try to write down 5 different functions that you think might be linearly independent? Try to keep them as simple as possible (e.g. monomials are better than many terms in a sum)
 
  • #12
Office_Shredder said:
Can you try to write down 5 different functions that you think might be linearly independent? Try to keep them as simple as possible (e.g. monomials are better than many terms in a sum)
##f_1(x)=1##
##f_2(x) =x##
##f_3(x) = x^2##
##f_4(x)= x^3##

Keeping the context of this question in mind, I couldn’t write the fifth one.
 
  • #13
Delta2 said:
Well it seems that ##f_3## of yours generates a subspace of V.
Not even, that function is not in ##V## because it is not continuous at x=1.
 
  • Informative
Likes   Reactions: Delta2
  • #14
Delta2 said:
No I don't mean that unfortunately.
I mean to define some functions like for example ##f_3:[0,2]\to R## with $$f_3(x)=0 ,x\in [0,1]$$$$f_3(x)=x^3,x\in [1,2] $$and then it is obvious at least to me that this ##f_3## is one of the basis vectors of V.
This too is not continuous at x=1.
 
  • #15
Hall said:
##f(1)=f(1)##
##a+ b = A + B + C +D##
##a = A +B +C +D -b##
Only 5 of them are independent.
So can you figure out 5 ways of assigning the independent constants such that the resulting functions are linearly independent?
 
  • #16
Hall said:
##f_1(x)=1##
##f_2(x) =x##
##f_3(x) = x^2##
##f_4(x)= x^3##

Keeping the context of this question in mind, I couldn’t write the fifth one.
The middle two are fine, but ##f_1## and ##f_3## aren't elements of your space! You have to define these piecewise.
 
  • Like
Likes   Reactions: Steve4Physics
  • #17
Office_Shredder said:
The middle two are fine, but ##f_1## and ##f_3## aren't elements of your space! You have to define these piecewise.
Sorry, but ##f_2## and ##f_3## are the middle ones.

Considering that you meant ##f_1## and ##f_4##, I would say
$$
f_1(x) = 1 ~~~~~~~ x \in [1,2]$$
Else,
$$
f_1(x) = 0 ~~~~~~~~ x \in [0,1]$$

Why would ##f_4(x) = x^3## not belong to V? It is the case when ##A=1, B=C=D=0##?
 
  • #18
Hall said:
Sorry, but ##f_2## and ##f_3## are the middle ones.

Considering that you meant ##f_1## and ##f_4##, I would say
$$
f_1(x) = 1 ~~~~~~~ x \in [1,2]$$
Else,
$$
f_1(x) = 0 ~~~~~~~~ x \in [0,1]$$

Why would ##f_4(x) = x^3## not belong to V? It is the case when ##A=1, B=C=D=0##?
Again, that ##f_1## is not in V because it is not continuous at x=1. Your basis functions must satisfy all requirements to be in V.

Hall said:
Why would f4(x)=x3 not belong to V? It is the case when A=1,B=C=D=0?
Because on [0,1] it is not of a correct functional form to be in V.

Please, do not overthink this and consider post #15.
 
  • #19
Orodruin said:
So can you figure out 5 ways of assigning the independent constants such that the resulting functions are linearly independent?
Yes, but it is not something I have done before so I’m unable to kinda absorb it.

I can understand, for example, that ##x^3 + 3x^2+ 5x## and ##x^3+ x^2 +x### are independent functions.
 
  • #20
Hall said:
Yes, but it is not something I have done before so I’m unable to kinda absorb it.
Well, start by writing down one such combination.
 
  • #21
Orodruin said:
Well, start by writing down one such combination.
##f_1(x) = 5 x^2 + 5x##
##f_2(x)= x^3 + 2x^2 + 3x + 4##
##f_3(x)= x^2 + 13 x##
##f_4(x)= 2x^3 +3 x^2 +4x+ 5##
##f_5{x} = x^2##
 
  • #22
Check that ##V## is a subspace.

By continuity at ##x=1## we have
<br /> a+b = A+B+C+D.<br />
The solution space for the above is of dimension ##5##. More explicitly, put
<br /> V\to \mathbb R^5,\quad \begin{cases} ax^2+bx, &amp;x\in [0,1] \\ Ax^3+Bx^2+Cx+D, &amp;x\in [0,2] \end{cases} \mapsto (A+B+C+D-b,b,A,B,C)<br />
for example and convince yourself it is an injective linear map. Since isomorphisms map bases to bases, pick your favourite basis in ##\mathbb R^5## and map it to a basis in ##V##.
 
  • Like
Likes   Reactions: Delta2
  • #23
Consider <br /> \begin{split}<br /> f_1 &amp;: x \mapsto \begin{cases} x &amp; x \in [0,1] \\ 1 &amp; x \in (1,2] \end{cases} \\<br /> f_2 &amp;: x \mapsto \begin{cases} 0 &amp; x \in [0,1] \\ x - 1 &amp; x \in (1,2]. \end{cases} \end{split}<br /> Then every degree 1 polynomial in V is a linear combination of f_1 and f_2.
 
  • Informative
Likes   Reactions: Delta2
  • #24
Hall said:
##f_1(x) = 5 x^2 + 5x##
##f_2(x)= x^3 + 2x^2 + 3x + 4##
##f_3(x)= x^2 + 13 x##
##f_4(x)= 2x^3 +3 x^2 +4x+ 5##
##f_5{x} = x^2##
This is just guessing. ##f_2## and ##f_4## are not in V. 1,3 and 5 are linearly dependent.
 
  • #25
Orodruin said:
This is just guessing
I simply took ##A = 1, B=2, C= 3, D= 4, a= 5## for ##f_1## and ##f_2##, and ##a= 1, A=2, B=3, C=4, D=5## for ##f_3## and ##f_4##.
 
  • #26
Elements of ##V## are defined piecewise. So too should your basic elements be defined as such.
 
  • Like
Likes   Reactions: Delta2
  • #27
Hall said:
I simply took ##A = 1, B=2, C= 3, D= 4, a= 5## for ##f_1## and ##f_2##, and ##a= 1, A=2, B=3, C=4, D=5## for ##f_3## and ##f_4##.
Why would you put all of the constants non-zero? Your interpretation of what it means becomes lacking.

Start with this: What is the function for which ##a=A=1## and ##B=C=D=0##? (The value of ##b## should follow)
 
  • #28
pasmith said:
Consider <br /> \begin{split}<br /> f_1 &amp;: x \mapsto \begin{cases} x &amp; x \in [0,1] \\ 1 &amp; x \in (1,2] \end{cases} \\<br /> f_2 &amp;: x \mapsto \begin{cases} 0 &amp; x \in [0,1] \\ x - 1 &amp; x \in (1,2]. \end{cases} \end{split}<br /> Then every degree 1 polynomial in V is a linear combination of f_1 and f_2.
$$
f_3(x)=
\begin{cases}
x^2 & x \in [0,1]\\
1 & x \in(1,2] \\
\end{cases}$$
$$
f_4(x) =
\begin{cases}
0 & x \in[0,1] \\
x^2 -1 & \in (1,2]\\
\end{cases}$$
All the second order polynomials in V are linear combinations of ##f_1, f_2, f_3## and ##f_4##?
 
  • #29
Orodruin said:
Start with this: What is the function for which a=A=1 and B=C=D=0? (The value of b should follow)
$$
f_1 =
\begin{cases}
x^2 & x \in[0,1]\\
x^3 & x \in[1,2]\\
\end{cases}$$
 
  • #30
Hall said:
$$
f_1 =
\begin{cases}
x^2 & x \in[0,1]\\
x^3 & x \in[1,2]\\
\end{cases}$$
Ok, so now, what if you pick ##A=1## and ##B=C=D=a=0##?
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
Replies
15
Views
2K
  • · Replies 17 ·
Replies
17
Views
4K
Replies
9
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 12 ·
Replies
12
Views
2K