Vectors a,b |a+kb|=1 .Show that |a||b|sinx<=b, x:angle of vectors a,b

  • Thread starter Thread starter 3.1415926535
  • Start date Start date
  • Tags Tags
    Vectors
AI Thread Summary
The discussion revolves around proving that the area of the parallelogram formed by vectors OA and OB is less than or equal to the magnitude of vector OB, given the condition that the norm of the vector sum OA + kOB equals 1. The user initially establishes the relationship between the vectors and their magnitudes, leading to the inequality involving the sine of the angle between the vectors. After some algebraic manipulation, they derive a condition that simplifies to a non-negative expression, confirming the inequality holds true. The solution effectively demonstrates the required relationship between the vectors and their magnitudes. The proof concludes successfully, affirming the initial claim.
3.1415926535
Messages
80
Reaction score
0

Homework Statement



Let there be two vectors \mathbf{OA},\mathbf{OB}\neq\mathbf{0}If <br /> \exists k\in \mathbb{R} such as that \left \| \mathbf{OA} +k\mathbf{OB}\right \|=1 show that Area(OACB)\leq\left \| \mathbf{OB} \right \| (OACB:parallelogram)

Homework Equations


None


The Attempt at a Solution



I proved that we need to show that \left \|\mathbf{a}\right \| \left \|\mathbf{b}\right \| \sin(\theta )\leq \left \|\mathbf{b} \right \| where θ:angle of vectors a=ΟΑ,b=ΟΒ but after that I am stuck.
Any suggestions? Any hints on how I should proceed?
 
Last edited:
Physics news on Phys.org
Nevermind, I solved it. Here is the solution

First of all,
\left \| \mathbf{a} +k\mathbf{b}\right \|=1\Leftrightarrow (\mathbf{a} +k\mathbf{b})^{2}=1\Leftrightarrow \mathbf{a}^{2} +k^{2}\mathbf{b}^{2}+2k\left \langle {\mathbf{a} ,\mathbf{b} } \right\rangle =1\Leftrightarrow\left \langle {\mathbf{a} ,\mathbf{b} } \right\rangle^{2}=\frac{(1-\mathbf{a}^{2} -k^{2}\mathbf{b}^{2} )^{2}}{4k^2} (1)

We need to show that
\left \|\mathbf{a}\right \| \left \|\mathbf{b}\right \| \sin(\theta )\leq \left \|\mathbf{b} \right \|\Leftrightarrow \left \|\mathbf{a}\right \|^{2} \left \|\mathbf{b}\right \|^{2} \sin(\theta )^{2}\leq \left \|\mathbf{b} \right \|^{2}\Leftrightarrow \left \|\mathbf{a}\right \|^{2} \left \|\mathbf{b}\right \|^{2}- \left \|\mathbf{a}\right \|^{2} \left \|\mathbf{b}\right \|^{2}\cos(\theta )^{2}\leq\left \|\mathbf{b} \right \|^{2}\<br /> \Leftrightarrow\left \|\mathbf{a}\right \|^{2} \left \|\mathbf{b}\right \|^{2}-\left \|\mathbf{b} \right \|^{2}\leq\left\langle {\mathbf{a} ,\mathbf{b} } \right\rangle^{2}(2)

Finally,
<br /> <br /> (2)\overset{(1)}{\rightarrow}\mathbf{a}^{2} \mathbf{b}^{2}-\mathbf{b} ^{2}\leq\frac{(1-\mathbf{a}^{2}-k^{2}\mathbf{b}^{2}) ^{2}}{4k^2}\Leftrightarrow (1-\mathbf{a}^{2}+k^{2}\mathbf{b}^{2})^{2}\geq 0 <br />

which is true!
 
The working out suggests first equating ## \sqrt{i} = x + iy ## and suggests that squaring and equating real and imaginary parts of both sides results in ## \sqrt{i} = \pm (1+i)/ \sqrt{2} ## Squaring both sides results in: $$ i = (x + iy)^2 $$ $$ i = x^2 + 2ixy -y^2 $$ equating real parts gives $$ x^2 - y^2 = 0 $$ $$ (x+y)(x-y) = 0 $$ $$ x = \pm y $$ equating imaginary parts gives: $$ i = 2ixy $$ $$ 2xy = 1 $$ I'm not really sure how to proceed from here.
Back
Top