Vectors a,b |a+kb|=1 .Show that |a||b|sinx<=b, x:angle of vectors a,b

  • Thread starter Thread starter 3.1415926535
  • Start date Start date
  • Tags Tags
    Vectors
Click For Summary
SUMMARY

The discussion centers on proving the inequality |a||b|sin(θ) ≤ |b| for two non-zero vectors OA and OB, where θ is the angle between them. The proof involves manipulating the equation ||OA + kOB|| = 1, leading to the conclusion that the area of the parallelogram formed by these vectors is bounded by the magnitude of vector OB. The final result confirms that the derived inequality holds true, demonstrating the relationship between the vectors and their angles definitively.

PREREQUISITES
  • Understanding of vector operations and properties
  • Familiarity with trigonometric identities involving sine and cosine
  • Knowledge of the geometric interpretation of vectors and areas
  • Proficiency in manipulating algebraic expressions and inequalities
NEXT STEPS
  • Study vector algebra and its applications in geometry
  • Learn about the properties of sine and cosine in relation to angles between vectors
  • Explore the concept of vector magnitudes and their geometric interpretations
  • Investigate inequalities in vector calculus and their proofs
USEFUL FOR

Students studying linear algebra, mathematicians interested in vector analysis, and educators teaching geometric properties of vectors.

3.1415926535
Messages
80
Reaction score
0

Homework Statement



Let there be two vectors \mathbf{OA},\mathbf{OB}\neq\mathbf{0}If <br /> \exists k\in \mathbb{R} such as that \left \| \mathbf{OA} +k\mathbf{OB}\right \|=1 show that Area(OACB)\leq\left \| \mathbf{OB} \right \| (OACB:parallelogram)

Homework Equations


None


The Attempt at a Solution



I proved that we need to show that \left \|\mathbf{a}\right \| \left \|\mathbf{b}\right \| \sin(\theta )\leq \left \|\mathbf{b} \right \| where θ:angle of vectors a=ΟΑ,b=ΟΒ but after that I am stuck.
Any suggestions? Any hints on how I should proceed?
 
Last edited:
Physics news on Phys.org
Nevermind, I solved it. Here is the solution

First of all,
\left \| \mathbf{a} +k\mathbf{b}\right \|=1\Leftrightarrow (\mathbf{a} +k\mathbf{b})^{2}=1\Leftrightarrow \mathbf{a}^{2} +k^{2}\mathbf{b}^{2}+2k\left \langle {\mathbf{a} ,\mathbf{b} } \right\rangle =1\Leftrightarrow\left \langle {\mathbf{a} ,\mathbf{b} } \right\rangle^{2}=\frac{(1-\mathbf{a}^{2} -k^{2}\mathbf{b}^{2} )^{2}}{4k^2} (1)

We need to show that
\left \|\mathbf{a}\right \| \left \|\mathbf{b}\right \| \sin(\theta )\leq \left \|\mathbf{b} \right \|\Leftrightarrow \left \|\mathbf{a}\right \|^{2} \left \|\mathbf{b}\right \|^{2} \sin(\theta )^{2}\leq \left \|\mathbf{b} \right \|^{2}\Leftrightarrow \left \|\mathbf{a}\right \|^{2} \left \|\mathbf{b}\right \|^{2}- \left \|\mathbf{a}\right \|^{2} \left \|\mathbf{b}\right \|^{2}\cos(\theta )^{2}\leq\left \|\mathbf{b} \right \|^{2}\<br /> \Leftrightarrow\left \|\mathbf{a}\right \|^{2} \left \|\mathbf{b}\right \|^{2}-\left \|\mathbf{b} \right \|^{2}\leq\left\langle {\mathbf{a} ,\mathbf{b} } \right\rangle^{2}(2)

Finally,
<br /> <br /> (2)\overset{(1)}{\rightarrow}\mathbf{a}^{2} \mathbf{b}^{2}-\mathbf{b} ^{2}\leq\frac{(1-\mathbf{a}^{2}-k^{2}\mathbf{b}^{2}) ^{2}}{4k^2}\Leftrightarrow (1-\mathbf{a}^{2}+k^{2}\mathbf{b}^{2})^{2}\geq 0 <br />

which is true!
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
5
Views
842
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
Replies
18
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K