BitterX
- 35
- 0
Homework Statement
a body with mass M moves across a plane with friction
friction constant:
\mu = \lambda x^2
the body starts at x=0
with velocity v0
find at what x
the body stops
and what was the velocity half way there.
Homework Equations
v^2=v_0^2+2a\Delta x
The Attempt at a Solution
obviously,
F(x)=mg\mu = mg\lambda x^2
so
a(x)=g \lambda x^2
so in the equation v^2=v_0^2+2a\Delta x
I get
v^2=v_0^2+2g\lambda x^3the Question is, can I use this equation? the acceleration is not constant and this equation
depend on the fact that x=v_0t+ \frac{a}{2}t^2
and v=v_0+at
(and it's not true for non-constant acceleration)
if I cant, how can I integrate the acceleration?
or how do I get v(x)?
Thanks.
EDIT:
I used a= v\frac{dv}{dx}
therefore
vdv=adx
\int_{v_0}^{v(x)}{vdv} = g\lambda \int_{0}^{x}{x^2}
\frac{1}{2} ( v(x)^2- v_0^2) =\frac{1}{3} g\lambda x^3
v(x)^2=v_0^2+\frac{2}{3}g\lambda x^3
does that seem right?
Last edited: