Velocity of water out of reservoir.

  • Thread starter Thread starter John09
  • Start date Start date
  • Tags Tags
    Velocity Water
AI Thread Summary
The discussion centers on determining the efflux speed of water from a cylindrical tank, which is proportional to the square root of the water depth. The formula for velocity is derived as v = sqrt(2*g*h), indicating that the constant k is sqrt(2g). While some participants suggest considering pressure and volume for a more accurate calculation, others argue that these factors may not be necessary for the coursework context. The conversation highlights the importance of understanding dynamic and static pressures in fluid dynamics. Overall, the focus remains on finding an algebraic approach to determine the constant in the efflux speed equation.
John09
Messages
2
Reaction score
0
I have a cylindrical tank and I know that the efflux speed is proportional to the square root of the depth of the hole from the surface. So u=k sqrt(w). I need to algebraically determine the constant or k in that situation. Has anyone got any ideas as to how I should approach this? I was thinking that I could try and find the acceleration in i and j components and integrate it for velocity but didn't get far.

Thanks for any help.
 
Physics news on Phys.org
If you're ignoring the viscous effects, the efflux speed will be such that the dynamic pressure is equal to the static pressure just inside the hole. Dynamic pressure is 1/2*rho*v2, so rearranging for v, we can get that v = sqrt(2*p/rho). Since the pressure in a tank is simply from hydrostatic equilibrium (P = rho*g*h), we can plug in for P:

v = sqrt(2*rho*g*h/rho) = sqrt(2*g*h).

So, your constant is sqrt(2g).
 
Hm I don't think taking pressure into account is necessary as it is not part of our coursework.
 
If you want to know the velocity in fluid dynamics you need to know 2 things. Volume and pressure to find velocity. Unless you can invent some kinda new math cjl is right.
 
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top