Verification of moment of inertia calculation

AI Thread Summary
The discussion focuses on the moment of inertia calculation for regular polygons, where a user presents a simplified formula: I = (m/6)(3+tan(pi/n)^2)*R^2. The accuracy of this formula is questioned, particularly in relation to known results for specific shapes, such as the square and the thin solid disc. Clarifications are made regarding the axis of rotation, indicating that the moment of inertia differs based on the orientation. The conversation suggests a need for testing the formula against various polygons to validate its correctness. Overall, the thread emphasizes the importance of verifying calculations in physics.
Yaridovich
Messages
5
Reaction score
0
I was looking at the moment of inertia list that they have on Wikipedia and noticed that the moment of inertia for a regular polygon was rather complicated. I did the calculation myself and found a significantly simpler result of

I = (m/6)(3+tan(pi/n)^2)*R^2:

m is the mass of the polygon,

n is the number of edges of the polygon,

R is the length of the line segment from the center of the polygon to one of its edges, where the line segment is perpendicular to that edge. I just wanted to verify that this is correct; I can submit a proof of how I calculated this if need be.
 
Physics news on Phys.org
How about testing it out first for a few known polygons.If n is infinity you will have a thin solid disc for which the MI=(mR^2)/4.I think your equation gives (mR^2)/2
Whoops,we need to clarify this.If the axis of rotation is through the centre and at 90 degrees to the plane of the disc then the MI=(mR^2)/2.If you are considering the same axis then your equation seems to give the right answer.Try some other polygons.
 
Last edited:
moment of inertia of square:
I_c=\frac{m(h^2+w^2)}{12}=\frac{m(2h^2)}{12}=\frac{m(\sqrt{2}R)^2}{6}=\frac{mR^2}{3}
but your formula shows:
I_c=\frac{2mR^2}{3}
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...

Similar threads

Back
Top