snipez90
- 1,095
- 5
Homework Statement
Prove that (ab)^{-1} = a^{-1}b^{-1}, if, a,b \neq 0
2. Relevant properties
Associative property of multiplication
Existence of multiplicative inverses
The Attempt at a Solution
Since a,b \neq 0, there exists a number (ab)^{-1} such that (ab)^{-1}\cdot(ab) = 1. Multiplying both sides by a^{-1}b^{-1}, we have
(ab)^{-1}\cdot(ab) \cdot (a^{-1}b^{-1}) = 1\cdot (a^{-1}b^{-1}) \Rightarrow (ab)^{-1}\cdot(a \cdot a^{-1})\cdot(b \cdot b^{-1}) = a^{-1}b^{-1} \Rightarrow (ab)^{-1}\cdot 1 \cdot 1 = a^{-1}b^{-1} \Rightarrow (ab)^{-1} = a^{-1}b^{-1}
Any comments on making this shorter or neater or correct would be much appreciated.