- #1
- 5,697
- 238
I want to verify the the value of ##x_0## and ##y_0## of the given integral according to the formula of Mean Value of Harmonic function
[tex]\frac{1}{2\pi}\int_0^{2\pi} \cos(1+\cos t)\cosh(2+\sin t)\;dt[/tex]
Mean Value of Harmonic function on a disk ##\Omega## given:
[tex]u(x_0,y_0)=\frac {1}{2\pi}\int_{\Omega}u[(x-x_0),(y-y_0)] d\Omega[/tex]
[tex]\Rightarrow\;u[(x-x_0),(y-y_0)]=\cos(1+\cos t)\cosh(2+\sin t)[/tex]
[tex]\Rightarrow\;(x-x_0)=1+\cos t,\;(y-y_0)=2+\sin t[/tex]
Using Polar coordinates, ##x=r\cos t,\;y=r\sin t## where ##r=1## in this case.
[tex](x-x_0)=1+\cos t\;\Rightarrow\; x_0=-1\;\hbox{ and }\;(y-y_0)=2+\sin t\;\Rightarrow\;y_0=-2[/tex]
Am I correct?
Thanks
[tex]\frac{1}{2\pi}\int_0^{2\pi} \cos(1+\cos t)\cosh(2+\sin t)\;dt[/tex]
Mean Value of Harmonic function on a disk ##\Omega## given:
[tex]u(x_0,y_0)=\frac {1}{2\pi}\int_{\Omega}u[(x-x_0),(y-y_0)] d\Omega[/tex]
[tex]\Rightarrow\;u[(x-x_0),(y-y_0)]=\cos(1+\cos t)\cosh(2+\sin t)[/tex]
[tex]\Rightarrow\;(x-x_0)=1+\cos t,\;(y-y_0)=2+\sin t[/tex]
Using Polar coordinates, ##x=r\cos t,\;y=r\sin t## where ##r=1## in this case.
[tex](x-x_0)=1+\cos t\;\Rightarrow\; x_0=-1\;\hbox{ and }\;(y-y_0)=2+\sin t\;\Rightarrow\;y_0=-2[/tex]
Am I correct?
Thanks
Last edited: