MHB Verifying the Equality for n = 2: Is the Equation Correct?

  • Thread starter Thread starter tmt1
  • Start date Start date
tmt1
Messages
230
Reaction score
0
I have this equality

$$\frac{2^n}{n!} + 1 = \frac{{2}^{n + 1}}{n + 1}$$

and I'm not sure if it is correct or how to verify if it is correct. I've tried a few different approaches that have led to dead ends.
 
Mathematics news on Phys.org
tmt said:
I have this equality

$$\frac{2^n}{n!} + 1 = \frac{{2}^{n + 1}}{n + 1}$$

and I'm not sure if it is correct or how to verify if it is correct. I've tried a few different approaches that have led to dead ends.
n = 1
[math]\frac{2^1}{1!} + 1 = \frac{2}{1} + 1 = 2 + 1 = 3[/math]

[math]\frac{2^{1 + 1}}{1 + 1} = \frac{2^2}{2} = \frac{4}{2} = 2[/math]

So the equation can only have solutions for certain n, not all.

Graphing it we can see that the equation has only two solutions close to, but not equal to 1. See below.

Graph

-Dan
 
tmt said:
I have this equality

$$\frac{2^n}{n!} + 1 = \frac{{2}^{n + 1}}{n + 1}$$

and I'm not sure if it is correct or how to verify if it is correct. I've tried a few different approaches that have led to dead ends.

Sorry, I meant to write

$$\frac{2^n}{n!} + 1 = \frac{{2}^{n + 1}}{(n + 1)!}$$

Does this make more sense? I'm trying a bunch of ways to verify it, but none of it works.
 
tmt said:
Sorry, I meant to write

$$\frac{2^n}{n!} + 1 = \frac{{2}^{n + 1}}{(n + 1)!}$$

Does this make more sense? I'm trying a bunch of ways to verify it, but none of it works.
n = 2

[math]\frac{2^2}{2!} + 1 = \frac{4}{2} + 1 = 2 + 1 = 3[/math]

[math]\frac{2^{2 + 1}}{(2 + 1)!} = \frac{2^3}{3!} = \frac{8}{6} = \frac{4}{3}[/math]

You really need to check these before you post them. (n = 1 doesn't work either. I chose n = 2 for variety.)

-Dan
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top