VERY HARD randomized algorithm/hash function question. PLESE HELP

  • Thread starter Thread starter complexity9
  • Start date Start date
  • Tags Tags
    Function Hard
complexity9
Messages
14
Reaction score
0
I have been trying to solve the problem in part (vi) for almost a whole week, but still not able to solve it. Please read the attachment before proceeding.

I was able to show that, using part (iii), we can construct a deterministic program S from P. Then S gives the same outcome as G for the same input. Therefore,

F(x_1, ..., x_m) = 0 if and only if \forall y_1, ..., y_n S(x_1, ..., x_m, y_1, ..., y_n) = 0

and

F(x_1, ..., x_m) = 1 if and only if \exists y_1, ..., y_n S(x_1, ..., x_m, y_1, ..., y_n) = 1

Now I need to find a way to modify S to get Q that satisfies the requirement in the question. They also gave a hint that I might be able to use the hash function to get the result.

Please help anyone! Some advice would also be useful even if you can't completely solve it. Please! Thanks you!

-Peter
 

Attachments

  • Untitled1.jpg
    Untitled1.jpg
    51.1 KB · Views: 525
  • Untitled2.jpg
    Untitled2.jpg
    33 KB · Views: 514
Mathematics news on Phys.org
*bump* anyone know how to solve this? help...
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
125
Views
19K
3
Replies
105
Views
14K
Replies
15
Views
2K
Replies
3
Views
1K
4
Replies
150
Views
19K
2
Replies
61
Views
12K
Back
Top