Very quick and easy question about integrating and completing the square

  • Thread starter Thread starter twisted079
  • Start date Start date
  • Tags Tags
    Integrating Square
twisted079
Messages
25
Reaction score
1

Homework Statement



The problem could be any variation of dx/(x2-2x)

Homework Equations



∫dx/x2-a2 = 1/2a ln ((x-a)/(x+a)) + C

The Attempt at a Solution



I understand the answer to be 1/2 ln ((x-2)/x) + C

My question is why is it just x on the bottom in the solution? Shouldnt it be x+2 since the equation states "x+a"? Similar to the way it is x-2 on the top which makes sense since the formula states "x-a". Any help is greatly appreciated.
 
Physics news on Phys.org
twisted079 said:

Homework Statement



The problem could be any variation of dx/(x2-2x)

Homework Equations



∫dx/x2-a2 = 1/2a ln ((x-a)/(x+a)) + C
This integration formula isn't directly relevant to your problem. In this formula, the denominator is a difference of squares. In your problem, you don't have a difference of squares.

You could manipulate your denominator to get a difference of squares, since
x2 - 2x = x2 - 2x + 1 - 1 = (x - 1)2 = 1.
twisted079 said:

The Attempt at a Solution



I understand the answer to be 1/2 ln ((x-2)/x) + C

My question is why is it just x on the bottom in the solution? Shouldnt it be x+2 since the equation states "x+a"? Similar to the way it is x-2 on the top which makes sense since the formula states "x-a". Any help is greatly appreciated.
 
Ah yes, I overlooked the minor details. Thank you.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top