Viewing Polynomials from k[x,y] as Elements of k[y][x]

NoDoubts
Messages
20
Reaction score
0
"Let f is a polynomial from k[x,y], where k is a field. Suppose that x appears in f with positive degree. We view f as an element of k(y)[x], that is polynomial in x whose coefficients are rational functions of y."

I think I am missing something...why do we need rational functions here? can't we represent any polynomial from k[x,y] as an element of k[y][x] i.e. polynomial in x whose coefficients are polynomials of y?
 
Physics news on Phys.org
I'm guessing here given I don't know from where you are getting this but...

Recall that a polynomial is also a rational function just as an integer is also a rational number.

I think the idea is to keep the format of k(y)[x] as a ring of polynomials (in x) over a field. So the y-polynomial coefficients are treated as elements of the larger ring of rational functions of y.
 
Yes, k[X,Y]=k[X][Y]=k[Y][X].

k[X,Y] is NOT equal to k(Y)[X].
 
yes, later on it says that "if f (polynomial from k[x,y]) is irreducible then it remains irreducible as an element of k(y)[x]"

can someone explain to me why it is so?

...I guess, if we assume f = gh where g,h are from k(y)[x] then we can multiply both sides by the product of common denominators of coefficients of g and h, So that we get f c(y) = g_1 h_1, where c(y), g_1, and h_1 are polynomials from k[x,y].

Now, how does this imply that f is not irreducible??
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top