Virtual Paricles and the Laws of Conservation

filegraphy
Messages
93
Reaction score
0
Do virtual particles break the conservation laws? Thanks
 
Physics news on Phys.org
No. Conservation of energy (i.e.) requires that the total amount of energy in the universe stays constant. If you take quantum mechanics into account, it might be better to phrase it as, 'the measured amount of energy in the universe must stay constant' (note that measurement doesn't just mean 'looking through a microscope and writing down a result, etc). Heisenberg's uncertainty principle states that the uncertainty in an energy measurement is related to the uncertainty in a time measurement:
<br /> \Delta E \Delta t \geq \bar{h}/2<br />
Thus, virtual particles do not violate conservation of energy because the uncertainty in the energy of the system will always be large enough over the short time-periods under consideration.
 
We had this discussion in numerous threads.

Virtual particles in Feynman diagrams do not violate four-momentum conservation.The four-momentum is conserved at every vertex of the diagram. Virtual particles (inner lines) in Feynman diagrams violate the mass-shell condition E²-p² = m²; so a virtual photon can have non.zero m².That's one reason why it is called virtual.

Usually virtual particles do not violate other conservation laws. Especially a charge derived from a local gauge symmetry must be conserved in order to guarantuee consistency of the quantum gauge theory. This are the so-called Ward or Slavnov-Tayler identities, the "quantum generalization of the continuity equation".

Sometimes global symmetries are violated in quantum field theory; this is called an anomaly. One example is the axial anomaly where the axial current Ward identity is violated due to quantum effects. In this anomaly it's exactly one Feynman triangle diagram that creates the violation of the (global) axial symmetry. So there are special cases where one can say that virtual particles violate conservation laws.
 
thanks for replying
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!

Similar threads

Replies
6
Views
2K
Replies
3
Views
2K
Replies
33
Views
3K
Replies
3
Views
1K
Replies
5
Views
1K
Replies
29
Views
3K
Replies
27
Views
2K
Back
Top