The derivative is simply the rate of change. The first graphic here is a good example, where the wavy line is f(x) and the red bars represent the derivative at each point.
http://m.sparknotes.com/math/calcab/applicationsofthederivative/section5.rhtml
The easiest way to think about how derivatives work is by thinking of the sine wave and costume wave. Why are they derivatives of each other? Visually, it becomes quite obvious when you put them on top of each other. When the sine wave crosses the y axis, it's going up with a slope of exactly 1, so where sine crosses the y-axis from beneath, its derivative is 1, which is the cosines of the same x. When the sine wave is at a value of 1, what's it doing? It's at the top of its period and headed back down, so it's not going up or down at all, giving it a derivative of zero.
Oh, and if you look carefully, you can tell why 2x is the derivative of x^2. Look at how the graph changes on x^2. What is the slope of the line at any given x alone that line? It's a curve so you know it has to be changing. How's it changing? 2x.
A better example with something concrete: your bank account. Your bank account value is f(x). So today u have 50, tomorrow you have 75... so f(1) = 50, f(2) = 75... So from your real values, what was the rate of change? 25. That's the first derivative of your bank account. So next week, you have 100 in your account for f(3), the rate of change f'(x) was again 25. If you take it one step further, you'll notice that the account went up 25 each time. So what was the rate at which the rate itself changed? Well the rate didn't change at all, it was 25 both times, so 0. That's the second derivative. That's essentially the same as position, velocity, acceleration. Derivatives tell you how much a function above it changes.