Volume in n Dimensions: Understanding the Meaning of n=0

Sheldon Cooper
Messages
21
Reaction score
0
Hello,
Surfing across the internet, I learned that the volume of a sphere in n dimensions can be expressed by
V(n) = (Π^(n/2)) / Γ((n/2)+1),
where n is the number of dimensions we are considering
But if we consider n=0, then we get 1. So, how do we interpret this? I mean what does volume in zero dimensions mean?
Thanks in advance :smile:
 
Mathematics news on Phys.org
Sheldon Cooper said:
Hello,
Surfing across the internet, I learned that the volume of a sphere in n dimensions can be expressed by
V(n) = (Π^(n/2)) / Γ((n/2)+1),
where n is the number of dimensions we are considering
But if we consider n=0, then we get 1. So, how do we interpret this? I mean what does volume in zero dimensions mean?
Thanks in advance :smile:

I am not an expert in this topic. If you want a simple answer, you can read Wikipedia, n-sphere
https://en.m.wikipedia.org/wiki/N-sphere
 
Yes, this seems to be a matter of computing the Hausdorff 0-dimensional measure which coincides with the number of points. See the formula in the article quoted in the above post.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top