Volume of region roated about specified axi

  • Thread starter Thread starter Painguy
  • Start date Start date
  • Tags Tags
    Volume
Painguy
Messages
118
Reaction score
0

Homework Statement



y = e^(-x), y = 0, x = -1, x = 0, about x = 1

Homework Equations





The Attempt at a Solution


2pi∫ (1-x)(e^(-x) dx from -1 to 0

=2pi∫ e^(-x) -x*e^(-x) dx from -1 to 0
=2pi(-e^(-x) - ∫x*e^(-x) dx from -1 to 0
u=x
du=dx
dv=e^(-x)dx
v=-e^(-x)
2pi(-e^(-x)-(-xe^(-x) +∫e^(-x)dx))
2pi(-e^(-x) +xe^(-x) +e^(-x))
2pi(xe^(-x)) from -1 to 0
2pi(e)

is this right?
 
Physics news on Phys.org
Seems ok to me.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top