MHB -w8.7.28 integral rational expression

Click For Summary
The discussion focuses on solving the integral of the rational expression $\int\frac{t+1}{{t}^{2}+t-1}\ dt$. Participants explore various methods for integration, including partial fraction decomposition and substitution techniques. The denominator does not factor easily, prompting the use of the quadratic formula to find roots. The final answer aligns with the book's solution, which involves logarithmic expressions derived from the integration process. The conversation highlights the complexity of the integral and the different approaches to arrive at the correct solution.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
nmh{1000}
$\tiny{\text {Whitman 8.7.28 integral rational expression}} $
$$\displaystyle
\int\frac{t+1}{{t}^{2}+t-1}\ dt$$
$\text{book answer}$
$$\displaystyle\frac{5+\sqrt{5}}{10}
\ln\left({2t+1-\sqrt{5}}\right)
+\frac{5-\sqrt{5}}{10}
\ln\left({2t+1+\sqrt{5}}\right)+C$$

$\text{expansion}$
$$\displaystyle
\int\frac{t+1}{{t}^{2}+t-1}\ dt
=\int\frac{t}{{t}^{2}+t-1}\ dt
+\int\frac{1}{{t}^{2}+t-1}\ dt $$

Not sure how to approach this since it won't factor
 
Last edited:
Physics news on Phys.org
Well, the denominator of the integrand doesn't factor with rational roots being the result, but you can get the roots using the quadratic formula and then factor that way...you will find:

$$t^2+t-1=\left(t+\frac{1+\sqrt{5}}{2}\right)\left(t+\frac{1-\sqrt{5}}{2}\right)=\frac{1}{4}(2t+1+\sqrt{5})(2t+1-\sqrt{5})$$
 
karush said:
so then if
$$\displaystyle
t^2+t-1
=\left(t+\frac{1+\sqrt{5}}{2}\right)\left(t+\frac{1-\sqrt{5}}{2}\right)
=\frac{1}{4}(2t+1+\sqrt{5})(2t+1-\sqrt{5})$$
we can express the integral as
$$\displaystyle
I
=\frac{1}{4}\left[
\int\frac{t}{2t+1+\sqrt{5}}\ dt
+\int\frac{1}{2t+1-\sqrt{5}}\ dt \right]$$

No, check your partial fraction decomposition...you should get:

$$\frac{t+1}{t^2+t-1}=\frac{1}{\sqrt{5}}\left(\frac{\sqrt{5}-1}{2t+\sqrt{5}+1}+\frac{\sqrt{5}+1}{2t-\sqrt{5}+1}\right)$$
 
$\text{so if}$
$$\displaystyle \frac{t+1}{t^2+t-1}
=\frac{1}{\sqrt{5}}
\left(\frac{\sqrt{5}-1}{2t+\sqrt{5}+1}
+\frac{\sqrt{5}+1}{2t-\sqrt{5}+1}\right)$$
$\text{then}$
$$I=\frac{1}{\sqrt{5}}
\left[
\sqrt{5}-1 \int \frac{1}{2t+\sqrt{5}+1} \ dt
+\sqrt{5}+1\int\frac{1}{2t-\sqrt{5}-1} \ dt
\right]$$
$\text{ integrating}$
$$I=\frac{1}{\sqrt{5}}
\left[
(\sqrt{5}-1)(\ln({2t+\sqrt{5}+1}))
+(\sqrt{5}+1)\ln({2t-\sqrt{5}-1})
\right]+C$$
 
Last edited:
karush said:
$\text{so if}$
$$\displaystyle \frac{t+1}{t^2+t-1}
=\frac{1}{\sqrt{5}}
\left(\frac{\sqrt{5}-1}{2t+\sqrt{5}+1}
+\frac{\sqrt{5}+1}{2t-\sqrt{5}+1}\right)$$
$\text{then}$
$$I=\frac{1}{\sqrt{5}}
\left[
\sqrt{5}-1 \int \frac{1}{2t+\sqrt{5}+1} \ dt
+\sqrt{5}+1\int\frac{1}{2t-\sqrt{5}-1} \ dt
\right]$$
$\text{ integrating}$
$$I=\frac{1}{\sqrt{5}}
\left[
(\sqrt{5}-1)(\ln({2t+\sqrt{5}+1}))
+(\sqrt{5}+1)\ln({2t-\sqrt{5}-1})
\right]$$

That's not quite right...what is:

$$I=\int\frac{a}{2u+b}\,du$$?
 
MarkFL said:
That's not quite right...what is:

$$I=\int\frac{a}{2u+b}\,du$$?
$$
\displaystyle I=\int\frac{a}{2u+b}\,du
=\frac{a\ln\left({\left| 2u+b \right|}\right)}{2} +C$$

$\displaystyle
I=\frac{1}{\sqrt{5}}
\left[\frac
{(\sqrt{5}-1)(\ln({2t+\sqrt{5}+1}))}{2}

+\frac{(\sqrt{5}+1)\ln({2t-\sqrt{5}-1})}{2} \right]+C$

TA DA

$$\displaystyle
I=
+\left(\frac{5-\sqrt{5}}{10}\right)
\ln\left({2t+1+\sqrt{5}}\right)
+\left(\frac{5+\sqrt{5}}{10}\right)
\ln\left({2t+1-\sqrt{5}}\right) +C$$
 
Last edited:
karush said:
$\tiny{\text {Whitman 8.7.28 integral rational expression}} $
$$\displaystyle
\int\frac{t+1}{{t}^{2}+t-1}\ dt$$
$\text{book answer}$
$$\displaystyle\frac{5+\sqrt{5}}{10}
\ln\left({2t+1-\sqrt{5}}\right)
+\frac{5-\sqrt{5}}{10}
\ln\left({2t+1+\sqrt{5}}\right)+C$$

$\text{expansion}$
$$\displaystyle
\int\frac{t+1}{{t}^{2}+t-1}\ dt
=\int\frac{t}{{t}^{2}+t-1}\ dt
+\int\frac{1}{{t}^{2}+t-1}\ dt $$

Not sure how to approach this since it won't factor

An easier method perhaps?

$\displaystyle \begin{align*} \int{\frac{t + 1}{t^2 + t - 1}\,\mathrm{d}t} &= \frac{1}{2} \int{ \frac{2\,t + 2}{t^2 + t - 1}\,\mathrm{d}t } \\ &= \frac{1}{2} \int{ \frac{2\,t + 1}{t^2 + t - 1} \,\mathrm{d}t } + \frac{1}{2}\int{ \frac{1}{t^2 + t - 1} \,\mathrm{d}t } \\ &= \frac{1}{2} \int{ \frac{2\,t + 1}{t^2 + t - 1} \,\mathrm{d}t } + \frac{1}{2} \int{ \frac{1}{ t^2 + t + \left( \frac{1}{2} \right) ^2 - \left( \frac{1}{2} \right) ^2 - 1 } \,\mathrm{d}t } \\ &= \frac{1}{2} \int{ \frac{2\,t + 1}{t^2 + t - 1} \,\mathrm{d}t } + \frac{1}{2} \int{ \frac{1}{\left( t + \frac{1}{2} \right) ^2 - \frac{5}{4}}\,\mathrm{d}t } \end{align*}$

The first integral can be solved with a substitution $\displaystyle \begin{align*} u = t^2 + t - 1 \implies \mathrm{d}u = \left( 2\,t + 1 \right) \,\mathrm{d}t \end{align*}$ and the second can be solved with a substitution $\displaystyle \begin{align*} t + \frac{1}{2} = \frac{\sqrt{5}}{2}\,\cosh{(x)} \implies \mathrm{d}t = \frac{\sqrt{5}}{2}\,\sinh{(x)}\,\mathrm{d}x \end{align*}$.
 
https://drive.google.com/file/d/1iXnEH2ZmCMbPZeofOPsIKjGW2MdzlvEw/view?usp=sharing
 

Similar threads