-w8.7.28 integral rational expression

Click For Summary
SUMMARY

The forum discussion focuses on solving the integral of the rational expression $\int\frac{t+1}{{t}^{2}+t-1}\ dt$ as presented in Whitman 8.7.28. The solution involves partial fraction decomposition, leading to the final answer of $\frac{5+\sqrt{5}}{10} \ln(2t+1-\sqrt{5}) + \frac{5-\sqrt{5}}{10} \ln(2t+1+\sqrt{5}) + C$. Key steps include using the quadratic formula to factor the denominator and applying integration techniques for logarithmic functions.

PREREQUISITES
  • Understanding of integral calculus, specifically integration techniques.
  • Familiarity with partial fraction decomposition.
  • Knowledge of logarithmic integration.
  • Ability to apply the quadratic formula for factoring polynomials.
NEXT STEPS
  • Study partial fraction decomposition techniques in detail.
  • Learn about integration of rational functions using substitution methods.
  • Explore advanced integration techniques, including hyperbolic functions.
  • Review the properties and applications of logarithmic functions in calculus.
USEFUL FOR

Students and educators in calculus, mathematicians focusing on integral calculus, and anyone seeking to deepen their understanding of rational expressions and integration techniques.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
nmh{1000}
$\tiny{\text {Whitman 8.7.28 integral rational expression}} $
$$\displaystyle
\int\frac{t+1}{{t}^{2}+t-1}\ dt$$
$\text{book answer}$
$$\displaystyle\frac{5+\sqrt{5}}{10}
\ln\left({2t+1-\sqrt{5}}\right)
+\frac{5-\sqrt{5}}{10}
\ln\left({2t+1+\sqrt{5}}\right)+C$$

$\text{expansion}$
$$\displaystyle
\int\frac{t+1}{{t}^{2}+t-1}\ dt
=\int\frac{t}{{t}^{2}+t-1}\ dt
+\int\frac{1}{{t}^{2}+t-1}\ dt $$

Not sure how to approach this since it won't factor
 
Last edited:
Physics news on Phys.org
Well, the denominator of the integrand doesn't factor with rational roots being the result, but you can get the roots using the quadratic formula and then factor that way...you will find:

$$t^2+t-1=\left(t+\frac{1+\sqrt{5}}{2}\right)\left(t+\frac{1-\sqrt{5}}{2}\right)=\frac{1}{4}(2t+1+\sqrt{5})(2t+1-\sqrt{5})$$
 
karush said:
so then if
$$\displaystyle
t^2+t-1
=\left(t+\frac{1+\sqrt{5}}{2}\right)\left(t+\frac{1-\sqrt{5}}{2}\right)
=\frac{1}{4}(2t+1+\sqrt{5})(2t+1-\sqrt{5})$$
we can express the integral as
$$\displaystyle
I
=\frac{1}{4}\left[
\int\frac{t}{2t+1+\sqrt{5}}\ dt
+\int\frac{1}{2t+1-\sqrt{5}}\ dt \right]$$

No, check your partial fraction decomposition...you should get:

$$\frac{t+1}{t^2+t-1}=\frac{1}{\sqrt{5}}\left(\frac{\sqrt{5}-1}{2t+\sqrt{5}+1}+\frac{\sqrt{5}+1}{2t-\sqrt{5}+1}\right)$$
 
$\text{so if}$
$$\displaystyle \frac{t+1}{t^2+t-1}
=\frac{1}{\sqrt{5}}
\left(\frac{\sqrt{5}-1}{2t+\sqrt{5}+1}
+\frac{\sqrt{5}+1}{2t-\sqrt{5}+1}\right)$$
$\text{then}$
$$I=\frac{1}{\sqrt{5}}
\left[
\sqrt{5}-1 \int \frac{1}{2t+\sqrt{5}+1} \ dt
+\sqrt{5}+1\int\frac{1}{2t-\sqrt{5}-1} \ dt
\right]$$
$\text{ integrating}$
$$I=\frac{1}{\sqrt{5}}
\left[
(\sqrt{5}-1)(\ln({2t+\sqrt{5}+1}))
+(\sqrt{5}+1)\ln({2t-\sqrt{5}-1})
\right]+C$$
 
Last edited:
karush said:
$\text{so if}$
$$\displaystyle \frac{t+1}{t^2+t-1}
=\frac{1}{\sqrt{5}}
\left(\frac{\sqrt{5}-1}{2t+\sqrt{5}+1}
+\frac{\sqrt{5}+1}{2t-\sqrt{5}+1}\right)$$
$\text{then}$
$$I=\frac{1}{\sqrt{5}}
\left[
\sqrt{5}-1 \int \frac{1}{2t+\sqrt{5}+1} \ dt
+\sqrt{5}+1\int\frac{1}{2t-\sqrt{5}-1} \ dt
\right]$$
$\text{ integrating}$
$$I=\frac{1}{\sqrt{5}}
\left[
(\sqrt{5}-1)(\ln({2t+\sqrt{5}+1}))
+(\sqrt{5}+1)\ln({2t-\sqrt{5}-1})
\right]$$

That's not quite right...what is:

$$I=\int\frac{a}{2u+b}\,du$$?
 
MarkFL said:
That's not quite right...what is:

$$I=\int\frac{a}{2u+b}\,du$$?
$$
\displaystyle I=\int\frac{a}{2u+b}\,du
=\frac{a\ln\left({\left| 2u+b \right|}\right)}{2} +C$$

$\displaystyle
I=\frac{1}{\sqrt{5}}
\left[\frac
{(\sqrt{5}-1)(\ln({2t+\sqrt{5}+1}))}{2}

+\frac{(\sqrt{5}+1)\ln({2t-\sqrt{5}-1})}{2} \right]+C$

TA DA

$$\displaystyle
I=
+\left(\frac{5-\sqrt{5}}{10}\right)
\ln\left({2t+1+\sqrt{5}}\right)
+\left(\frac{5+\sqrt{5}}{10}\right)
\ln\left({2t+1-\sqrt{5}}\right) +C$$
 
Last edited:
karush said:
$\tiny{\text {Whitman 8.7.28 integral rational expression}} $
$$\displaystyle
\int\frac{t+1}{{t}^{2}+t-1}\ dt$$
$\text{book answer}$
$$\displaystyle\frac{5+\sqrt{5}}{10}
\ln\left({2t+1-\sqrt{5}}\right)
+\frac{5-\sqrt{5}}{10}
\ln\left({2t+1+\sqrt{5}}\right)+C$$

$\text{expansion}$
$$\displaystyle
\int\frac{t+1}{{t}^{2}+t-1}\ dt
=\int\frac{t}{{t}^{2}+t-1}\ dt
+\int\frac{1}{{t}^{2}+t-1}\ dt $$

Not sure how to approach this since it won't factor

An easier method perhaps?

$\displaystyle \begin{align*} \int{\frac{t + 1}{t^2 + t - 1}\,\mathrm{d}t} &= \frac{1}{2} \int{ \frac{2\,t + 2}{t^2 + t - 1}\,\mathrm{d}t } \\ &= \frac{1}{2} \int{ \frac{2\,t + 1}{t^2 + t - 1} \,\mathrm{d}t } + \frac{1}{2}\int{ \frac{1}{t^2 + t - 1} \,\mathrm{d}t } \\ &= \frac{1}{2} \int{ \frac{2\,t + 1}{t^2 + t - 1} \,\mathrm{d}t } + \frac{1}{2} \int{ \frac{1}{ t^2 + t + \left( \frac{1}{2} \right) ^2 - \left( \frac{1}{2} \right) ^2 - 1 } \,\mathrm{d}t } \\ &= \frac{1}{2} \int{ \frac{2\,t + 1}{t^2 + t - 1} \,\mathrm{d}t } + \frac{1}{2} \int{ \frac{1}{\left( t + \frac{1}{2} \right) ^2 - \frac{5}{4}}\,\mathrm{d}t } \end{align*}$

The first integral can be solved with a substitution $\displaystyle \begin{align*} u = t^2 + t - 1 \implies \mathrm{d}u = \left( 2\,t + 1 \right) \,\mathrm{d}t \end{align*}$ and the second can be solved with a substitution $\displaystyle \begin{align*} t + \frac{1}{2} = \frac{\sqrt{5}}{2}\,\cosh{(x)} \implies \mathrm{d}t = \frac{\sqrt{5}}{2}\,\sinh{(x)}\,\mathrm{d}x \end{align*}$.
 
https://drive.google.com/file/d/1iXnEH2ZmCMbPZeofOPsIKjGW2MdzlvEw/view?usp=sharing
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K