Wave function of a photon in a spherical cavity

tarquinius
Messages
11
Reaction score
0
Hello there, could anyone help me with a certain basic problem in relativistic QM? What would be the wave function of a photon (or generally a particle with zero rest mass) in a spherical 3D cavity, having potential energy V=0 within the cavity and V=k outside the sphere (k>0)? I have been trying to google it but all I have found were just solutions assuming nonzero rest mass.

Thanks in advance.
 
Physics news on Phys.org
I think you can solve this bad-boy non-relativistically, there are many derivations in quantum optics texts where there is a cavity with volume V, and the wave function is derived. Id check out a quantum optics textbook.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top