- #1
Terrell
- 317
- 26
Homework Statement
[/B]
Weak Induction:
If (i) ##S(1)## holds, and (ii) for every ##k \geq 1(S(k) \Rightarrow S(k+1)##. Then ##\forall n \geq 1##, ##S(n)## holds.
Strong Induction:
If (i) ##S(k)## is true and (ii) ##\forall m\geq k [S(k) \land \cdots \land S(m)]\Rightarrow S(m+1)##. Then for every ##n \geq k##, the statement ##S(n)## is true.
Homework Equations
n/a
The Attempt at a Solution
Base case: k = 1; If ##S(1)## is true and ##[S(1)\land\cdots \land S(m)]\Rightarrow S(m+1)##, then observe that this is the exact assertion of weak induction. So the base case holds.
Inductive case: Let ##N:=\{z \in \Bbb{N} \vert \text{z satisfying (i) and (ii) of strong induction}\Rightarrow \forall n \geq z(S(n) \text{is true.})\}##. Suppose ##k \in N##, ##S(k+1)## is true, and ##\forall m' \geq k+1[S(k+1)\land \cdots \land S(m')]\Rightarrow S(m'+1)##. Since ##k \in N \Rightarrow \forall n\geq k(S(n)\text{ is true})## and ##k+1 \gt k##, then ##\forall j\geq k+1 \gt k[S(j) \text{ is true.}]##. Therefore, ##k+1 \in N## and by weak induction, strong induction is true.