I Proving the Wedge Product of 2 One-Forms is a 2-Form

Silviu
Messages
612
Reaction score
11
Hello! I was trying to show that the wedge product of 2 one-forms is a 2-form. So we have ## (A \wedge B)_{\mu \nu} = A_\mu B_\nu - A_\nu B_\mu ##. So to show that this is a (0,2) tensor, we need to show that ##(A \wedge B)_{\mu' \nu'} = \Lambda_{\mu'}^\mu \Lambda_{\nu'}^\nu (A \wedge B)_{\mu \nu}##. But ##A_{\mu'} B_{\nu'} - A_{\nu'} B_{\mu'} = \Lambda_{\mu'}^\mu A_\mu \Lambda_{\nu'}^\nu B_\nu - \Lambda_{\nu'}^\nu A_\nu \Lambda_{\mu'}^\mu B_\mu ##. I am not sure how to proceed from here, as the matrices don't commute, so I can't bring the ##\Lambda## in the front. What should I do?
 
Physics news on Phys.org
What matrices? Those are just numbers.
 
  • Like
Likes vanhees71
Also again, be warned about this sloppy notation of indizes. You should put the prime on the symbol (or in addition to the symbol). Otherwise the equations don't make sense strictly speaking (I know that some unfortunate textbooks use this very dangerous notation). Also make sure that both the "vertical and horizontal" placement of the indices is accurate. For a 2nd-rank tensor the transformation law should be written as
$$T_{\mu \nu}'={\Lambda^{\rho}}_{\mu} {\Lambda^{\sigma}}_{\nu} T^{\rho \sigma}.$$
Concerning your question, Orodruin has given you the right hint. The tensor components are all numbers, and thus the product is the usual commutative product of real numbers!
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top