What Am I Missing in the Chain Rule Calculation?

  • Thread starter Thread starter yungman
  • Start date Start date
  • Tags Tags
    Chain Chain rule
yungman
Messages
5,741
Reaction score
294
\hbox { Let }\; u(x,y)=v(x^2-y^2,2xy) \;\hbox { and let }\; t=x^2-y^2,\;s=2xy

u_x = 2xv_t \;+\; 2yv_s

u_{xx} = 2v_t + 4x^2 v_{tt} + 8xyv_{ts} + 4y^2 v_{ss}

The u_{yy} can be done the same way and is not shown here.



According to Chain Rule:

u_x = \frac{\partial v}{\partial x} \;=\; \frac{\partial v}{\partial t}\frac{\partial t}{\partial x} \;+\; \frac{\partial v}{\partial s}\frac{\partial s}{\partial x} \;=\; 2x\frac{\partial v}{\partial t} \;+\; 2y\frac{\partial v}{\partial s}

u_{xx} = \frac{\partial^2 v}{\partial x^2} = \frac{\partial}{\partial x}[2x\frac{\partial v}{\partial t} \;+\; 2y\frac{\partial v}{\partial s}] = 4x^2\frac{\partial^2 v}{\partial t^2} \;+\; 2\frac{\partial v}{\partial t} \;+\; 4y^2 \frac{\partial^2 v}{\partial s^2}

Where

\frac{\partial y}{\partial x} = 0

Please tell me what I am doing wrong? How do I miss 8xyv_{ts} term?
 
Last edited:
Physics news on Phys.org
\frac{\partial}{\partial x} \frac{\partial v}{\partial t} = \frac{\partial^2 v}{\partial t^2}\frac{\partial t}{\partial x} + \frac{\partial^2 v}{\partial s \partial t}\frac{\partial s}{\partial x}
 
I see, thanks.
 
Back
Top