What are all the possible formulas to use for 2D motion with projecti

AI Thread Summary
The discussion emphasizes that there are not many distinct formulas for 2D motion in projectile physics, suggesting that they stem from a single foundational equation. It highlights the importance of understanding how to manipulate this core formula to derive specific equations needed for different problems. The conversation references two papers that provide insights into horizontal projectiles and angled projectiles. The use of standard variables such as gravity (g), delta x, and velocity (vx) is noted. Ultimately, mastering the application of the fundamental formula is key to solving projectile motion problems effectively.
stevethaboss
Messages
1
Reaction score
0
These are the papers it's based off of.. http://mredwards.net/Files/Problem%20D%20Horizontal%20Projectiles.pdf
http://www.mredwards.net/Files/Problem%20E%20Projectiles%20from%20an%20angle.pdf

My class uses g for gravity and delta x, vx etc...
 
Last edited by a moderator:
Physics news on Phys.org
If I understand correctly what your question is, you are approaching physics from the wrong side. There are not many formulas - in a way there is only one - and solving any problem is a matter of cleverly using it to derive the formula that is necessary to solve the particular problem.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top