What Are Binomial Coefficients and How Are They Derived?

AI Thread Summary
Binomial coefficients are derived from the concept of counting combinations of objects, represented mathematically as binomial(n, r) = n! / (r!(n-r)!). The derivation begins with understanding permutations, where the number of k-permutations of n objects is given by n! / (n-k)!. To find k-combinations, the permutations of k objects must be accounted for, leading to the formula x = n! / [k!(n-k)!]. The discussion also touches on the application of binomial coefficients in scenarios like Bernoulli trials and the expansion of expressions like (H+T)^n. Further clarification on related mathematical results is requested, particularly regarding the powers of sums involving roots.
Gale
Messages
682
Reaction score
2
k, maybe wrong forum... whatever...

Anyway, so i was hoping someone could maybe derive or at least explain binomial coefficients. Like, i know that binomial(n,r)= n!/(n-r)!r! but why? in class the guy was explaining something like, if you're counting, and you're trying to arrange 3 balls into 2 groups then its like...


|1 2 3
1|2 3
1 2|3
1 2 3|

and that because of that, it was like, the formula we'd use for this problem would be binomial(n+r-1, r-1), and then we plug that into the factorial problem... and voila... but, i dunno. this didn't make sense to me at all. we introduce a divider, and we derive some formula for it... and... eh...

so, i see how the method was convienient, but i think there must be some more formal way of going about it. soo...
 
Physics news on Phys.org
Okay, first we need to know that the set of all n-permutations of n objects (arrangements of all n objects) contains n! elements. It is easy enough to see this from the multiplication principle of counting. You can then derive the expression for all k-permutations of n objects where k is between n and 0 as n!/(n-k)!. This can be derived in an in situ fashion. Suppose x is the number of k-permutations. Then by the multiplication principle x*(n-k)! = n!, so we have x = n!/(n-k)!. (LHS explanation: x counts permutations of k things. Next, we permute n-k things for each permutation x counts. This is the same as the amount of permutations of n things.) This is the method we shall use to get the form for combinations.
Suppose you have a set of n objects. Let x be the number of k-combinations of n objects, where k is between n and 0. If we were to then count the k-permutations of these k objects, we should then have a number equivalent to k-permutations of the original n objects. Now each object in the set of combinations has k! permutations, so we have the equation k!*x = n!/(n-k)!, which we solve to get the familiar x = n!/[k!(n-k)!].
 
Last edited:
You can look at it as a heads and tails situation. (H+T)(H+T) = HH+HT+TH+TT = H^2+2HT+T^2; which give us all of the four outcomes from flipping a series of heads and tails. This can all be repeated for the nth power, (H+T)^n. These are known, by the way, as Bernoulli trials.
 
Uh, I am sorry, I am posting a question in this thread, but it's realted to binomial coeffecients. The question is that there exists an important result that (rootA + B)to the power n = I + f ( I - integral value, f - fractional part ). From this we get the value of (A + Bsquare)to the power n = K to the power n. Then, it is explained for n as odd and even integer separately.
I have not got this one clearly. Can someone please explain this to me.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top