What Are Cyclic Quadratic Residues and Their Sums Modulo Prime Numbers?

  • Thread starter Thread starter ramsey2879
  • Start date Start date
  • Tags Tags
    Cyclic Quadratic
ramsey2879
Messages
841
Reaction score
3
I also wonder about an other interesting residue relation

Let P be a prime,

let a^{2^n} be called a cyclic quadratic residue if there is integer m dependent on a such that a^{2^{n + mp}} = a^{2^n} for all integers p \mod P
It seems that the sum of all such cylic residues is either 0 or 1 mod P
For instance for P = 17 the only cyclic residue is 1 but for P = 37
there are the cyclic sequences
33 16 34 9 7 12 33 ...
10 26 10 ...
1 ...
and the sum of all these numbers, not including repetitions is 4*37.
 
Last edited:
Physics news on Phys.org
Take the first 5 squares modulo 11: 1,4,9,5,3. Now square these numbers: Presto! We have them all back again 1,5,4,3,9. And the total is 22=11x2.
 
ramsey2879 said:
I also wonder about an other interesting residue relation

Let P be a prime,

let a^{2^n} be called a cyclic quadratic residue if there is integer m dependent on a such that a^{2^{n + mp}} = a^{2^n} for all integers p \mod P
It seems that the sum of all such cylic residues is either 0 or 1 mod P
For instance for P = 17 the only cyclic residue is 1 but for P = 37
there are the cyclic sequences
33 16 34 9 7 12 33 ...
10 26 10 ...
1 ...
and the sum of all these numbers, not including repetitions is 4*37.
Sorry I wasn't clear I mean let S(1) = k mod p, S(n) = S(n-1)^2 mod p. this sequence does not become cyclic until S(i) = S(i+j) and i > 1 so not all quadratic residues are necessarily cyclic quadratic residues. if p = 11 the cyclic sequences are 4,5,3,9,4,5,3,9 ... and 1,1,1,1,..
So all 5 residues are cyclic quadratic residues.
There are other related sequences such as S(n) = S(n-1)^2 - 2 which are also interesting because it is the sequence A(n) = F(2^n)/F(2^(n-1)) where F = the fibonacci sequences.
F(4) = 3 F(8) = 21, 21/3 = 7 = 3^2 -2 F(16)/F(8) = 987/21 = 47 = 7*7 - 2, etc which in mod 11 is 3,7,3,7,3,7,3,7,..., but in mod 17 is 3,7,13,14,7,13,14 ... where 7,13,and 14 sum to 34
 
Last edited:
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top