MHB What are Left Cosets and How Do You Find Them?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Cosets
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Let $H=\{0;\pm 3;\pm 6;\pm 9;\cdots\}$ Find all the left cosets of $H \textit{ in } \Bbb{Z}$ok I can only see that
From $\textit{H}$ we have $\textit{H}=3 \Bbb{Z}$ thus we cosets of
$1+3\Bbb{Z},\quad 2+3\Bbb{Z} \cdots $ didn't know what the "left cosets" meantthere must be more that could be said about this
so more info welcome
 
Physics news on Phys.org
Hi karush,

karush said:
didn't know what the "left cosets" meant

Let $H$ be a subgroup of $G$. The left cosets of $H$ are all sets of the form $gH$, where $g\in G$ and $gH=\{gh:~h\in H\}$ by definition. Note that even though $H$ is a subgroup of $G$, $gH$ is not necessarily a subgroup (which is why the phrasing "sets of the form..." was just used); e.g, the left coset $1+3\mathbb{Z}$ of your original post is only a subset of $\mathbb{Z}$, even though $3\mathbb{Z}$ is a subgroup of $\mathbb{Z}$.

With this in mind, when you list all the possible cosets you must let $g$ run through all the elements of the group $G$. In your example this means looking at $k+3\mathbb{Z}$ for all $k\in\mathbb{Z}$. Upon doing so you should find that two cosets $k_{1}+3\mathbb{Z}=k_{2}+3\mathbb{Z}$ if and only if $k_{1}\equiv k_{2}$ (mod 3). Hence, there are only 3 left cosets of $3\mathbb{Z}:$ $3\mathbb{Z}, 1+3\mathbb{Z}$, and $2+3\mathbb{Z}$. In essence this proves a well-known result from abstract algebra that $\mathbb{Z}_{n}\cong \mathbb{Z}/n\mathbb{Z}.$

karush said:
there must be more that could be said about this

There certainly is. All of this talk about cosets is leading to the notion of normal subgroups and quotient/factor groups. For example, in the result I quoted above, $\mathbb{Z}_{n}\cong \mathbb{Z}/n\mathbb{Z}$, $\mathbb{Z}/n\mathbb{Z}$ is a quotient/factor group. As you will soon learn, all subgroups of an abelian/commutative group, which $\mathbb{Z}$ is, are necessarily normal. Quotient groups are an important tool, so it is good that you are working hard to understand left cosets.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top