What Are the Best Lasers for Optics Experiments?

Click For Summary
For optics experiments, a 351nm Argon Ion laser is commonly recommended, though it is expensive at around $6,000 for new models. The discussion highlights the importance of matching the laser's wavelength to the specific requirements of the experiment, particularly when using a B-BBO crystal for entangled photon generation. While cheaper alternatives like 405nm semiconductor lasers exist, they may lack the necessary coherence for advanced experiments. Additionally, practical considerations such as power supply requirements and the availability of suitable detectors for different wavelengths are crucial. Overall, selecting the right laser involves balancing cost, specifications, and the specific needs of the optical experiments being conducted.
luxor99
Messages
8
Reaction score
0
I'm looking for a good laser for optic experiments.

All the professional papers I've read show the use of a 351nm Argon Ion laser. A new 30 mW one of these is about $6,000, but I see used ones pop up on Ebay from time to to time.

My question is, is there a difference between this laser used in university labs and one of those high-powered Wicked Lasers? I can get a 100mw 405nm laser there for about $100. The specs seem the same or superior...what am I missing?

Thanks!
 
Physics news on Phys.org
Ehm, that depends very strongly on the kind of experiment you want to perform. There are hundreds of laser manufacturers out there and for some experiments a simple laser pointer would suffice (e.g. double slit), for others you need slightly more expensive ones (e.g. PDC) or you might need extremely expensive ones (e.g. high power multi-beam femtosecond pump probe).

Do you need CW or pulsed? If pulsed, what pulse duration do you need? What powers do you need? Do you need a specific wavelength? Should the wavelength be tunable? Should the beams be spectrally broad or narrow? What about coherence times?

Also, you should be aware that most quality lasers require you to take some security measures to avoid harm to other people.
 
Thanks for the feeback! My main purpose is to experiment with entangled photons using a B-BBO crystal.
 
So for which wavelength is your BBO crystal (or the one you are going to get) cut. These crystals are very picky as you need to get the phase matching right and will usually only work for a narrow range of wavelengths. Typically that would be around 351 nm which means Argon ion lasers which are not cheap. 405 nm lasers are usually semiconductor lasers which have rather low coherence. Anyway, it is best to check the available range of PDC crystals and crosscheck the range of available and affordable laser sources and see whether there is a wavelength at which you can get both.
 
luxor99 said:
Thanks for the feeback! My main purpose is to experiment with entangled photons using a B-BBO crystal.

The lasers you need usually run on three-phase power, unles you have that in your house or lab, you're going to have troubles running those experiments.
 
Maybe it would be easier to create entangled photons in the telecom range at around 1.55 micron with around 775 nm pump. That range should be accessible by cheaper lasers, however, detectors will get more complicated and expensive and I am not quite sure whether there are crystals for this range or you need more complex strategies based on cascaded quantum dot decays or such stuff. If there are crystals that might be realizable at home. Otherwise you are out of luck.

There are also turnkey solutions for this range. I know of Nucrypt and if I remember correctly also IDQuantique selling those (still far from cheap, though) and I do not know the specs.
 
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
First, I need to check that I have the 3 notations correct for an inner product in finite vector spaces over a complex field; v* means: given the isomorphism V to V* then: (a) physicists and others: (u,v)=v*u ; linear in the second argument (b) some mathematicians: (u,v)=u*v; linear in the first argument. (c) bra-ket: <v|u>= (u,v) from (a), so v*u . <v|u> is linear in the second argument. If these are correct, then it would seem that <v|u> being linear in the second...

Similar threads

Replies
3
Views
2K
Replies
6
Views
1K
Replies
2
Views
1K
Replies
3
Views
2K
Replies
5
Views
3K
Replies
3
Views
2K