What are the formal operations of tensors and their applications?

  • Thread starter Thread starter GarageDweller
  • Start date Start date
  • Tags Tags
    Tensors
GarageDweller
Messages
103
Reaction score
0
Hi, I've seen in some texts where a tensor is only supplied with one(or two) of it's arguments when it has more than that, and produce a tensor with a lower order than the original.
Is this a formal operation?
For example, the moment of inertia tensor has 2 arguments, supplying it with an angular velocity vector gives an angular momentum vector.
 
Mathematics news on Phys.org
Hey GarageDweller.

The term for reducing the number of indices (both upper and lower) of a tensor is known as contraction and the idea is that things eventually 'sum out' to remove that index from being one that can vary in the summation as opposed to something that is constant.

You'd probably be better off reading about contraction in tensor algebra than me telling to you because I don't think I'd do as much justice.
 
Yes, it's a general property of [2nd order] tensors that when summed over one index with a vector the operation produces a new vector that in general is not in the same direction as the original vector. So with the moment of inertia tensor you would have L_{i} = I_{ij} \omega_{j}. Similarly, if you sum 2nd order tensor over both indices with two vector you will get a scalar invariant value. Again, in the case of the moment of inertia tensor this would be the rotational kinetic energy 2T = I_{ij} \omega_{i} \omega_{j}.

And yes it is a general property of tensor no matter the rank because it's simply the inner product that you're seeing. The inner product always reduces the rank of the tensor that is performing the operation by 1.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top