Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

A What are the implications of a new 750GEV particle to GUTs?

  1. May 3, 2016 #1
    What are the implications of a new 750GEV particle to current GUTs?

    in the next couple of months, hopefully the LHC will either confirm or not, a new previously unknown particle at 750GEV based on a diphoton excess.

    can currently researched GUTs like SU(5), SO(10) etc accommodate a new particle, spin 0 or spin 2, of mass 750 GEV?

    and if the LHC does confirm a new 750GEV, how would it effect the Higgs hierarchy problem?

    is there a fine-tuning problem for the Higgs with the scale of new physics occurring at 750GEV?

    how would the 750GEV particle affect Higgs hierarchy proposed solutions like SUSY and Technicolor?
     
  2. jcsd
  3. May 8, 2016 #2
    Thanks for the post! This is an automated courtesy bump. Sorry you aren't generating responses at the moment. Do you have any further information, come to any new conclusions or is it possible to reword the post?
     
  4. May 10, 2016 #3

    ohwilleke

    User Avatar
    Gold Member

    A new 750 GeV particle would almost certainly imply multiple other particles to go with it in a class of particles that do not currently exist. Most GUTs are formulated with the idea that they should predict few particles other than those of the Standard Model, so many won't have an obvious place to fit this although heroic efforts will be made to do so. Now obviously, you can formulate a GUT with arbitrarily many particles and forces as you can imagine (and this 750 GeV particle would probably imply the need for another Standard Model gauge coupling force as well), so I'm sure someone could come up with some way to fit it into a GUT scheme, but it would probably be one of the less parsimonious models.

    A number of alternative gravity theories feature both a massive and a massless graviton, but generally, the massive graviton in those theories is much lighter and much longer lived.

    Unless it contributes to the Higgs field and acquires mass by the mechanism it wouldn't impact the Higgs hierarchy problem at all, and we certainly don't know if this particle acquires mass by this means as opposed, for example, to being a composite particle of some sort that acquires most of its mass via the binding force that holds it together the way that hadrons do. The fact that the vacuum expectation value of the Higgs field is equal to the sum of the square of all of the Standard Model fundamental particle masses (almost exactly) hints at least that this particle's mass does not derive from the Higgs field or Higgs physics - and its properties have little or nothing in common with a hypothetical heavy Higgs boson from two or more Higgs doublet models. A heavy Higgs ought to decay differently than this apparently particle appears to. And, so it isn't a good fit to the hypothetical A or H particles of SUSY theories with multiple Higgs doublets.

    A neutral electric charge both implies the need for intermediate charged particles at some point in the decay/production chain (since photons aren't produced by particles without electric charge making diphoton decays impossible), but the pool of possible unstable spin-0 SUSY particles with neutral electric charge is not terribly large. If it is produced via gluon fusion as some theorists suggest, it would also need to have strong force color charge, which sleptons and squarks in SUSY theories both lack. SUSY gluinos are fermions while this, if it exists, if a boson. Bottom line - you need a pretty elaborate SUSY model to be a good fit.

    At least two preprints address the possibility that this resonance is a techni-pion. http://arxiv.org/abs/1604.02037 and http://arxiv.org/abs/1512.05564
     
    Last edited: May 10, 2016
  5. May 10, 2016 #4
    thanks for replying.

    i've heard that the 750 while it rules out MSSM does not rule out NMSSM

    if the 750 is a heavier higgs, how would that address the fine tuning problem?

    since they found a higgs at 126 is technicolor still viable? since the higgs is what breaks ew-symmetry is there a well motivated reason to continue to pursue technicolor?

    regards
     
  6. May 11, 2016 #5

    Haelfix

    User Avatar
    Science Advisor

    It's very much too early to say anything definitive. We don't know enough about the purported particles properties to really get into deep theoretical issues. Certainly *if* this turns out to be a real physical effect (and not some sort of systematic error), the devil will be in the details. The couplings, what channels it participates in, and so forth.

    Clearly every model with the word "minimal" in it, will need to be revised. This isn't the first time new physics has come out of left field and surprised everyone, the discovery of the muon was exactly like that.

    Many of the assumptions and arguments going into words like naturalness, GUTs and so forth will need to be rethought in light of what could be an entirely new landscape. I know this isn't satisfying, but unfortunately model building this beast is anything but simple. It really does suggest complicated new physics if it turns out to be true.

    Regarding technicolor, the original version of technicolor was ruled out long ago, and most of the remaining parameter space of the *simplest* versions have now been ruled out with the recent discovery of the Higgs.
     
  7. May 11, 2016 #6

    mfb

    User Avatar
    2017 Award

    Staff: Mentor

    If it is a particle, we don't know its lifetime. The best ATLAS fit corresponds to some width but the narrow width fit works as well, and in CMS data a narrow width is favored. That gives some minimal lifetime - it cannot be too wide. A maximal lifetime is much more challenging, you cannot use the decay width and with the photons you don't even have precise tracking. It could fly a few millimeters before the calorimeter photon pointing would notice it. At nonrelativistic speeds (small pT of the photon pairs), a few millimeters are tens of picoseconds.

    Edit:
    A systematic error is the most unlikely result. A statistical fluctuation: possible. But there is no way to get a peak in the diphoton spectrum by doing something wrong.
     
    Last edited: May 11, 2016
  8. May 11, 2016 #7
    what about SUSY ? its my understanding MSSM is ruled out if this particle is real.

    how soon can LHC confirm at current data collection?
     
  9. May 11, 2016 #8

    mfb

    User Avatar
    2017 Award

    Staff: Mentor

    Optimistic: ~2-3/fb for analyses shown at ICHEP (3rd to 10th of August). That is smaller than the 2015 dataset (~4/fb), but if the excess is real at the 2015 signal strength, both experiments should have something like 2.5-3.5 sigma local significance in 2016 data alone, and people will get really excited. Combinations might even reach 5 sigma local significance per experiment, combining both experiment could give that as global significance. Such a combination is unlikely, however, as the experiments will focus on analyzing larger datasets.
    The full 2016 dataset, currently expected to be 20/fb, will then confirm the existence beyond reasonable doubt and will allow a reasonable cross section measurement.

    Pessimistic for LHC performance but with particle: 1 to 1.5/fb shown at ICHEP, ~2 sigma if the excess is real and the signal strength is as in 2015. Very interesting, but probably not sufficient to celebrate. A few weeks more should be a few 1/fb more, sufficient to get high significances.

    Optimistic for LHC performance but without particle: No excess in 2-3/fb, combination with 2015 still has some significance, but interest will drop rapidly.

    Pessimistic: 1 to 1.5/fb, no excess, but the dataset is too small to draw any conclusion. Interest will still drop a bit.
     
  10. May 11, 2016 #9
    thanks, any specific dates when cern lhc will announce the data results analysis from the new run 2016 starting now, that i can mark on my calender? thanks in advance
     
  11. May 11, 2016 #10

    mfb

    User Avatar
    2017 Award

    Staff: Mentor

    Probably at ICHEP, 3rd to 10th of August. There is no detailed schedule available yet for the conference, but typically they try to move important things to the front so talks in the parallel sessions can show details.

    I would expect an update on the diphoton mass spectrum later in the year, and an analysis of the full dataset ~1.5-2 months after data taking ends (~1st of November), probably before Christmas like last year.

    All those things are just guesses based on typical timescales of analyses and previous publication schedules.
     
  12. May 11, 2016 #11
    how would this impact SUSY? 750 gev spin 0 is not a SUSy of any known SM partner, and thus far gluinos have not shown up
     
  13. May 11, 2016 #12

    Haelfix

    User Avatar
    Science Advisor

    Yea I've seen it argued several ways now, and with all due respect i'm skeptical. The diphoton channel is indeed very clean theoretically, so I don't think it is a misunderstood background attribution error, and the systematic checks from the CMS and Atlas groups looks solid, nevertheless large statistical fluctuations of this size (even with the trial factor) in both detectors don't happen every day. There was also some tension with run 1, so yea I'm not entirely sold on the clean systematic hypothesis quite yet.
     
  14. May 11, 2016 #13
    How would this particle imply other particles? If its a new particle that the standard model didn't predict, then how could you possibly know it implies anything at all? Why couldn't it just be one particle on its own?
     
  15. May 11, 2016 #14
    What's the probability that this particle isn't a statistical fluke? Are there good odds that this is the real deal?
     
  16. May 12, 2016 #15

    mfb

    User Avatar
    2017 Award

    Staff: Mentor

    Systematic effects that large, in such a clean channel, would be something completely new I think. A statistical fluctuation like that can happen. Remember the fluctuation around 140(?) GeV in the Higgs search? It was not as significant, but still interesting and both ATLAS and CMS had it. Went away with more data. LHCb had a 3.5 sigma deviation in delta A_CP, which is a single measurement value so there is no local significance. Went away with more data.
    If it is a new particle, it is uncharged, but there has to be some interaction that leads to photons - it has to be another particle in a loop. If that particle is a standard model particle, then the 750 GeV particle would be heavy enough to directly decay to a pair of that particles - much more frequent than the diphoton decay. We would have seen that already. We also have various other constraints - it cannot influence the anomalous magnetic moment of electrons or muons too much, for example.
    Depends on who you ask, but I think most particle physicists see the probability for an actual particle somewhere between 1% and 20%.
     
  17. May 13, 2016 #16

    ohwilleke

    User Avatar
    Gold Member

    There is absolutely uncertainty in the width of a potential 750 GeV mass resonance. But, any proposed massive graviton would have to have a lifetime sufficient to travel at a minimum from galaxies to their satellite galaxies at speeds of a something slightly less than the speed of light. Certainly, mass gravitons would be expected to have mean lifetimes longer than the mean lifetime of a free neutron (i.e. longer than 14 minutes before adjusting for special relativity), which would mean that any of its decays would happen outside the range of the detectors at the LHC. Any particle that decays fast enough for its decays to be detected by a detector at the LHC has a mean lifetime too short to be a massive graviton.

    Also, I disagree with you on the issue of systemic error. There are an infinite number of ways that systemic error can arise, and some of them could absolutely produce a peak in the diphoton spectrum. To cite just one example, there are probably half a dozen ways that some serious but overlooked screwup in the computer code that takes the raw data from the LHC and converts it into output used by scientists at the LHC could create such a result. Some systemic errors are just way out there - consider the loose electrical connection in the Opera superluminal neutrino debacle. You probably don't get a peak in the diphoton spectrum from the usual systemic errors like calibration and imprecision issues, but the fact that you can rule out the "usual suspects" for causes of systemic error doesn't mean that you can rule out the completely unexpected ones. Murphy's Law is a powerful thing and unlike statistical fluctuations, is much less subject to being quantified in an accurate way.
     
  18. May 13, 2016 #17

    ohwilleke

    User Avatar
    Gold Member

    The MSSM has been pretty much ruled out already with or without this particle. The MSSM continues to be used for a benchmark for much the same reasons that we still use Newtonian gravity for many purposes. Even though we know that both are not accurate depictions of Nature, they are accurate enough to use as toy models that simplify reality in respects that often aren't important for the purposes we want to use them for.

    Newtonian gravity is adequate for lots of dark matter modeling in many body problems at the galactic level. The MSSM is sufficient to model the properties that the lightest supersymmetric particles ought to have if any mainstream less minimal form of SUSY is real when setting up computer models to distinguish potential SUSY events from clearly non-SUSY events at a collider.
     
    Last edited: May 13, 2016
  19. May 13, 2016 #18

    ohwilleke

    User Avatar
    Gold Member

    One of the easier ways to know that this can't be one particle on its own is that it is overall electrically neutral, but it is decaying in a diphoton mode. An electrically neutral fundamental particle, by definition, cannot decay to or couple with photons (e.g. a neutrino and an anti-neutrino cannot directly annihilate each other into photons). Electric charge is defined as propensity to couple to photons. So, the particle would have to decay to a charged particle and a charged antiparticle which in turn could give rise to a diphoton decay path (or it could be a composite particle with charged components). But, there are no Standard Model intermediate particles that are obvious fits because we'd see additional channels of decay from Standard Model charged particles with 375 GeV of mass-energy. This isn't the only reason that there need to be other particles, but it is the most straightforward to explain.
     
  20. May 13, 2016 #19

    ohwilleke

    User Avatar
    Gold Member

    Lubos Motl, one of the most "optimistic" physics bloggers out there is on record saying there is a 50% likelihood that it is real. I call that irrational exuberance and tend to concur with mfb that 1% to 20% is closer to the mark.
     
  21. May 13, 2016 #20
    i've not heard MSSM is ruled out, is it bc of not finding gluinos below 1.5 TEV range? so are researchers now into nMSSM?

    just as gluons w z photons are all spin 1 could you have a spin-2 particle but not be a graviton,
     
  22. May 13, 2016 #21
    If it does turn out to be a real particle then it doesn't fit with the standard model, and doesn't fit either with any expectations of super symmetry (afaik)
    Nailing this thing down, even if it turns out to be an unexpected system or software glitch, is certainly going to be interesting.
     
  23. May 13, 2016 #22
    there are papers that suggest

    The 750 GeV Diphoton Excess as a First Light on Supersymmetry Breaking
    J.A. Casas, J.R. Espinosa, J.M. Moreno
    (Submitted on 24 Dec 2015 (v1), last revised 16 Feb 2016 (this version, v2))
    One of the most exciting explanations advanced for the recent diphoton excess found by ATLAS and CMS is in terms of sgoldstino decays: a signal of low-energy supersymmetry-breaking scenarios. The sgoldstino, a scalar, couples directly to gluons and photons, with strength related to gaugino masses, that can be of the right magnitude to explain the excess. However, fitting the suggested resonance width, Gamma ~ 45 GeV, is not so easy. In this paper we explore efficient possibilities to enhance the sgoldstino width, via the decay into two Higgses, two Higgsinos and through mixing between the sgoldstino and the Higgs boson. In addition, we present an alternative and more efficient mechanism to generate a mass splitting between the scalar and pseudoscalar components of the sgoldstino, which has been suggested as an interesting alternative explanation to the apparent width of the resonance.
    Comments: 14 pages, 3 figures
    Subjects: High Energy Physics - Phenomenology (hep-ph)
    Cite as: arXiv:1512.07895 [hep-ph]


    A SUSY Inspired Simplified Model for the 750 GeV Diphoton Excess
    E. Gabrielli, K. Kannike, B. Mele, M. Raidal, C. Spethmann, H. Veermäe
    (Submitted on 18 Dec 2015)
    The evidence for a new singlet scalar particle from the 750 GeV diphoton excess, and the absence of any other signal of new physics at the LHC so far, suggest the existence of new coloured scalars. To study this possibility, we propose a supersymmetry inspired simplified model, extending the Standard Model with a singlet scalar and with heavy scalar fields carrying both colour and electric charges -- the `squarks'. To allow the latter to decay, and to generate the dark matter of the Universe, we also add a neutral fermion to the particle content. We show that this model provides a two-parameter fit to the observed diphoton excess consistently with cosmology, while the allowed parameter space is bounded by the consistency of the model. In the context of our simplified model this implies the existence of other supersymmetric particles accessible at the LHC, rendering this scenario falsifiable. If this excess persists, it will imply a paradigm shift in assessing supersymmetry breaking and the role of scalars in low scale physics.
    Comments: 7 pages, 2 figures, SUSY incarnate
    Subjects: High Energy Physics - Phenomenology (hep-ph)
    DOI: http://arxiv.org/ct?url=http%3A%2F%2Fdx.doi.org%2F10%252E1016%2Fj%252Ephysletb%252E2016%252E02%252E069&v=6c0beeac [Broken]
    Cite as: arXiv:1512.05961 [hep-ph]
    ergy Physics - Phenomenology
    Supersoft SUSY Models and the 750 GeV Diphoton Excess, Beyond Effective Operators

    Linda M. Carpenter, Russell Colburn, Jessica Goodman
    (Submitted on 18 Dec 2015 (v1), last revised 16 Mar 2016 (this version, v3))
    We propose that the sbino, the scalar partner of a Dirac bino can explain the 750 GeV diphoton excess observed by ATLAS and CMS . We analyze a model in which the sbino couples to pairs of Standard Model (SM) gauge bosons. We analyze an effective operator model, as well as a completion in which the sbino couples to pairs of gauge bosons through loops of heavy sfermions. We find that the sbino may be given an appreciable decay width through tree level coupling in the Higgs or Higgsino sector and additionally fit the 750 GeV excess by considering gluon fusion processes with decay to diphotons.
    Comments: 9 pages, 5 figures, References corrected
    Subjects: High Energy Physics - Phenomenology (hep-ph)
    Cite as: arXiv:1512.06107 [hep-ph]
    750 GeV diphotons: implications for supersymmetric unification
    First online:
    03 March 2016
    Received:
    28 December 2015
    Revised:
    13 February 2016
    Accepted:
    22 February 2016
    DOI: 10.1007/JHEP03(2016)017

    Abstract
    A recent signal of 750 GeV diphotons at the LHC can be explained within the framework of supersymmetric unification by the introduction of vector quarks and leptons with Yukawa couplings to a singlet S that describes the 750 GeV resonance. We study the most general set of theories that allow successful gauge coupling unification, and find that these Yukawa couplings are severely constrained by renormalization group behavior: they are independent of ultraviolet physics and flow to values at the TeV scale that we calculate precisely. As a consequence the vector quarks and leptons must be light; typically in the region of 375 GeV to 700 GeV, and in certain cases up to 1 TeV. The 750 GeV resonance may have a width less than the experimental resolution; alternatively, with the mass splitting between scalar and pseudoscalar components of S arising from one-loop diagrams involving vector fermions, we compute an apparent width of 10s of GeV.


    these papers have plenty of citations but i'm wondering how solid they are, and whether the LHC can confirm them.

    are these papers reasonable or highly contrived, and is the picture of SUSY some version of nMSSM or something more complicated?
     
    Last edited by a moderator: May 7, 2017
  24. May 13, 2016 #23

    mfb

    User Avatar
    2017 Award

    Staff: Mentor

    There are various graviton models studied in particle physics, and they all predict lifetimes way below a nanosecond for the heavy versions. I'm not aware of models that predict lifetimes of minutes or more (could be bias from particle physics - if they don't decay they are much harder to find in accelerators). And why should it be able to travel to satellite galaxies?
    In two independent experiments with completely independent code at the same time? Also, that is easy to check, by looking at the event times. And every bug short of someone writing "if (diphoton.mass()<740 && diphoton.mass()<760)" doesn't produce a peak.
    Looking for spin and other decay channels (finding them or setting upper limits) would be the most important checks that can be done with 2016 data.
     
  25. May 16, 2016 #24

    ohwilleke

    User Avatar
    Gold Member

    Most of the work on massive gravitons is in GR theory and the main reason that it is explored is to provide insight into things like dark energy, dark matter and inflation. The dark energy and dark matter applications require a long lived massive graviton (although not necessarily even a meta stable one that lives on average as long as the universe is old), while inflation applications sometimes do and sometimes don't. I haven't seen much world on massive gravitons in particle physics, other than exclusions derived from missing traverse energy.

    Coding errors are rarely independent. Just as in a mathematics multiple choice question, people tend to make the same wrong answers due to the same kind of fuzzy thinking, people tend to make the same kind of errors in coding. I could imagine, for example, a coding error that tends to throw rounding error into high energy bins proportionately to actual effect size being duplicated that takes a pair of 750 GeVish bin events that are slightly unlikely and amplifies them. Again, that particular example is probably not it, nor are any of a dozen others I could come up with. But, coding errors aren't as independent as you would think, and they could produce this kind of result. I could also imagine, for example, transpositions in some reference number chart in favor of some number that would seem significant to a coder or has a common source for a data chart (e.g. an error in the same pdf frequency or a particle data group determined branching constant).

    Certainly good places to look.
     
  26. May 16, 2016 #25

    mfb

    User Avatar
    2017 Award

    Staff: Mentor

    The main model for the diphoton mass peak searches is a short-lived RS graviton. Short-lived as in O(GeV) decay width.
    I don't understand that sentence, but the analyses are unbinned, so arguments based on bins don't work.
    The same rounding errors in two different collaborations? The collaborations can't even decide to use either MeV or GeV everywhere instead of a mix of both within the collaborations.
    There is no such value that would enter the analysis.

    Could you please check the analyses before you make up claims that have no connection to them?
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted