What are the limitations of the Einstein field equation?

aditya23456
Messages
114
Reaction score
0
what does this statement mean..?actually complete statement is--
" Einstein field equation is not very choosy about what kinds of states of matter or nongravitational fields are admissible in a spacetime model. This is both a strength, since a good general theory of gravitation should be maximally independent of any assumptions concerning nongravitational physics, and a weakness, because without some further criterion, the Einstein field equation admits putative solutions with properties most physicists regard as unphysical, i.e. too weird to resemble anything in the real universe even approximately"
Can anyone please explain it physically
 
Physics news on Phys.org


Basically, the EFE allows systems of matter which we have never observed. For instance, the EFE are perfectly happy with negative energy density, but since mass has energy that would imply particles with negative mass. Since we have never seen such particles most scientists think that such solutions to the EFE are non-physical.

To avoid this problem, the EFE are usually supplemented with one or more energy conditions which constrain the set of admissible solutions to a set which are more reasonable given the types of matter systems that we know about:

http://en.wikipedia.org/wiki/Energy_condition
 
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Back
Top