What are the limitations of the Einstein field equation?

aditya23456
Messages
114
Reaction score
0
what does this statement mean..?actually complete statement is--
" Einstein field equation is not very choosy about what kinds of states of matter or nongravitational fields are admissible in a spacetime model. This is both a strength, since a good general theory of gravitation should be maximally independent of any assumptions concerning nongravitational physics, and a weakness, because without some further criterion, the Einstein field equation admits putative solutions with properties most physicists regard as unphysical, i.e. too weird to resemble anything in the real universe even approximately"
Can anyone please explain it physically
 
Physics news on Phys.org


Basically, the EFE allows systems of matter which we have never observed. For instance, the EFE are perfectly happy with negative energy density, but since mass has energy that would imply particles with negative mass. Since we have never seen such particles most scientists think that such solutions to the EFE are non-physical.

To avoid this problem, the EFE are usually supplemented with one or more energy conditions which constrain the set of admissible solutions to a set which are more reasonable given the types of matter systems that we know about:

http://en.wikipedia.org/wiki/Energy_condition
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
Back
Top