What Are the Odd Relationships Between Integers and Their Representations?

AI Thread Summary
The discussion explores the relationships between integers and their representations, particularly focusing on how certain integers can be expressed using smaller integers through various mathematical operations. A specific example is given with the integer 12, which has many divisors, suggesting that integers with more divisors may yield more representation options. The conversation also touches on the creativity involved in finding these representations, implying that clever mathematical manipulation can lead to interesting results. Additionally, there are references to specific equations for the integers 1 and 2, while noting the challenges of representing larger odd numbers using smaller even integers. Overall, the thread highlights the intriguing nature of integer relationships and representation techniques.
Simon Bridge
Science Advisor
Homework Helper
Messages
17,871
Reaction score
1,661
I come across some odd stuff online...

528836_325385777573552_804137390_n.jpg


... OK there's a typo for the 5 ... should be ##\small [\sqrt{9}]!-(9/9)## and the one for 7 looks a bit forced...
What I'm wondering is if there are other sets that do something like this ... i.e. so for a given integer Z, we can find another integer z<Z so that the integers ≤Z can be represented using the same n (integer) instances of z in each case.

It'll probably help of Z is something with lots of divisors ... i.e. Z= oh I dunno... 12.
Or is it just a case of "given sufficient cleverness" - which is to say that there are so many legitimate mathematical operations that it is always possible to create this effect?

Aside:
Millenialists take note: hold the clock upside down and all the numbers are made out of three 6's.
 
Mathematics news on Phys.org
I'm sure there are lists of that somewhere.

1=(X/X)^X
2=(X+X)/X
Those two are always possible.
9 is nice, as you can choose between 9 and 3 via the square root.
With small even numbers, it is tricky to get large odd numbers.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top