magneto1
- 100
- 0
Let $x=a$ be a solution of the equation $x^{2012}-7x+6=0$. Find all the possible values for: $1+a+a^2+\cdots+a^{2011}$.
magneto said:Let $x=a$ be a solution of the equation $x^{2012}-7x+6=0$. Find all the possible values for: $1+a+a^2+\cdots+a^{2011}$.
anemone said:My solution:...
anemone said:My solution:
We're told $x=a$ is a solution of the equation $x^{2012}-7x+6=0$, therefore we have $a^{2012}-7a+6=0$.
It can be rewritten as
$a^{2012}-1-7a+6+1=0$
$a^{2012}-1-7a+7=0$
$(a^{2012}-1)-7(a-1)=0$
$(a-1)(a^{2011}+a^{2010}+\cdots+a+1)-7(a-1)=0$
$(a-1)(a^{2011}+a^{2010}+\cdots+a+1-7)=0$
So the value of the expression $1+a+a^2+\cdots+a^{2011}$ could be either 2012 or 7.