MHB What Are the Possible Values of the Sum from a 2012-Degree Polynomial Solution?

  • Thread starter Thread starter magneto1
  • Start date Start date
Click For Summary
The discussion revolves around finding the possible values of the sum \(1 + a + a^2 + \cdots + a^{2011}\) where \(a\) is a root of the polynomial equation \(x^{2012} - 7x + 6 = 0\). Participants share their solutions and validate each other's approaches, emphasizing clever techniques used in the calculations. The conversation highlights the importance of understanding polynomial roots and their implications on the sum. Ultimately, the focus remains on deriving the values based on the properties of the polynomial. The thread concludes with a consensus on the correctness of the presented solutions.
magneto1
Messages
100
Reaction score
0
Let $x=a$ be a solution of the equation $x^{2012}-7x+6=0$. Find all the possible values for: $1+a+a^2+\cdots+a^{2011}$.
 
Mathematics news on Phys.org
magneto said:
Let $x=a$ be a solution of the equation $x^{2012}-7x+6=0$. Find all the possible values for: $1+a+a^2+\cdots+a^{2011}$.

My solution:

We're told $x=a$ is a solution of the equation $x^{2012}-7x+6=0$, therefore we have $a^{2012}-7a+6=0$.

It can be rewritten as

$a^{2012}-1-7a+6+1=0$

$a^{2012}-1-7a+7=0$

$(a^{2012}-1)-7(a-1)=0$

$(a-1)(a^{2011}+a^{2010}+\cdots+a+1)-7(a-1)=0$

$(a-1)(a^{2011}+a^{2010}+\cdots+a+1-7)=0$

So the value of the expression $1+a+a^2+\cdots+a^{2011}$ could be either 2012 or 7.
 
anemone said:
My solution:...

Quite clever! (Nod)
 
anemone said:
My solution:

We're told $x=a$ is a solution of the equation $x^{2012}-7x+6=0$, therefore we have $a^{2012}-7a+6=0$.

It can be rewritten as

$a^{2012}-1-7a+6+1=0$

$a^{2012}-1-7a+7=0$

$(a^{2012}-1)-7(a-1)=0$

$(a-1)(a^{2011}+a^{2010}+\cdots+a+1)-7(a-1)=0$

$(a-1)(a^{2011}+a^{2010}+\cdots+a+1-7)=0$

So the value of the expression $1+a+a^2+\cdots+a^{2011}$ could be either 2012 or 7.

Nicely done that's correct.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 7 ·
Replies
7
Views
1K
Replies
48
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
Replies
2
Views
2K