What Are the Steps to Solve the FRW Cosmological Model?

unscientific
Messages
1,728
Reaction score
13

Homework Statement



(a)Find how ##\rho## varies with ##a##.
(b) Show that ##p = \frac{2}{\lambda^2}##. Find ##B## and ##t_0##.
(c) Find ##w## and ##q_0##. What values of ##\lambda## makes the particle horizon infinite? Find the event horizon and age of universe.
(d) Find luminosity distance ##D_L## in terms of redshift ##z##. Find ##q_0## by expanding.[/B]

2013_B5_Q4.png

Homework Equations

The Attempt at a Solution


[/B]
Part(a)
For ##V_0 = 0##, we can see that ##\rho = P = \frac{1}{2} \dot \phi^2##. Thus ##w=1##. For dependency on ##a##:
\ddot \phi + 3(\frac{\dot a}{a})\dot \phi = 0
\dot \rho + 12(\frac{\dot a}{a}) \rho = 0
a^{-12}\frac{d}{dt}(\rho a^{12}) = 0
\rho \propto a^{-12}

Part (b)
I'll replace the ##p## by ##x## to avoid confusion with pressure ##P##. Given ##a(t) = t^x## and ##\phi = BM ln(\frac{t}{t_0})##, we have ##\frac{\dot a}{a} = \frac{x}{t}## and ##\dot \phi = \frac{BM}{t}## and ##\ddot \phi = -\frac{BM}{t^2}##.

Substituting into equation of motion:
\frac{-BM}{t^2} + 3\left(\frac{x}{t}\right)\left(\frac{BM}{t}\right) - \frac{\lambda V_0}{M} \left( \frac{t}{t_0} \right)^{-\lambda B}
BM(3x - 1) - \frac{\lambda}{M} V_0 t^2 \left( \frac{t}{t_0} \right)^{-\lambda B} = 0

Substituting into FRW equation:
\frac{x^2}{t^2} = \frac{8\pi G}{3} \left[ \frac{2}{2}\left(\frac{BM}{t}\right)^2 + V_0 \left( \frac{t}{t_0} \right)^{-\lambda B} \right]
x^2 = \frac{B^2}{6} + \frac{8 \pi G}{3}V_0 t^2 \left( \frac{t}{t_0} \right)^{-\lambda B}
Using our result from the equation of motion:
x^2 = \frac{B^2}{6}+ \frac{8 \pi G}{3} \left[ \frac{BM^2}{\lambda} (3x-1) \right]
x^2 - \left(\frac{B}{\lambda}\right)x + \left( \frac{B}{3\lambda} - \frac{B^2}{6} \right) = 0

Can't seem to get ##x## solely in terms of ##\lambda##, am I doing something wrong?

Part(d)
The metric for a flat, isotopic and homogeneous universe is given by
ds^2 = -c^2 dt^2 + a(t)^2 \left[ d\chi^2 + S^2(\chi) \left( d\theta^2 + sin^2\theta d\phi^2 \right) \right]

Flux is given by ##F = \frac{L}{4\pi D_L^2}##. From the metric, proper area is given by ##A = 4\pi(a_0 \chi)^2 = 4\pi \chi^2##. But due to redshift, photons are delayed by ##\nu_0 = \frac{\nu_e}{1+z}##. Thus we have
D_L = \chi(1+z)
where ##\chi## is the comoving distance.
This is only in first order, how do I expand it in 2nd order?!
 
Last edited:
Physics news on Phys.org
Would appreciate help on parts (b) and (c), but I made a slight bit of progress on part (d).

Part (d)
We know that ##D_L = \chi (1+z)##. I now need to re-express ##\chi## in terms of ##z##. For a light-like geodesic,
\chi = c \int \frac{1}{a(t)} dt
I read a useful trick is ##dz = d(1+z) = - \frac{\dot a}{a^2} dt = -(1+z) H(z) dz##. Substituting in,
\chi = c \int_0^z \frac{1}{H(z)} dz
D_L = c(1+z) \int_0^z \frac{1}{H(z)} dz
Using ##H(z) = H_0 \left[ 1 + (1+q_0)z + \cdots \right] ##:
D_L \approx \frac{c(1+z)}{H_0} \int_0^z \frac{1}{1 + (1+q_0)z} dz
D_L \approx \frac{c(1+z)}{H_0} \int_0^z \frac{1}{1 + (1+q_0)z} dz
D_L = \frac{c(1+z)}{H_0(1+q_0)} ln \left[ 1 + (1+q_0)z \right]
D_L \approx \frac{c(1+z)}{H_0(1+q_0)} \left[ (1+q_0)z - \frac{\left[ (1+q_0)z \right]^2}{2} \right]
D_L \approx \frac{c}{H_0}z \left[1 + \frac{z}{2}(1-q_0) \right]
 
Last edited:
bump on part (b)..
 
bump part (b)
 
Bump on part (b) - How do I get ##x## in terms of ##\lambda##?
 
Would appreciate help with part (b) please
 
any luck with solving ##x(\lambda)##?
 
anyone had a go with part (b)?
 
Still can't see how you can find ##p(\lambda)##..
 
  • #10
anyone else tried part (b) yet?
 
  • #11
bumpp part (b)
 
  • #12
bump on (b) and (c)
 
  • #13
bump on part (b) first
 
  • #14
bump on (b)
 
  • #15
part (b) bumping
 
  • #16
bump on part (b)
 
  • #17
bumpp on part (b)
 
  • #18
bumpp - I think there is a trick somewhere (dimensional analysis or something)
 
  • #19
bump
 
Back
Top