What are the voltages generated from this current source?

  • Thread starter Thread starter zenterix
  • Start date Start date
  • Tags Tags
    Electric circuit
Click For Summary
SUMMARY

The discussion focuses on analyzing the voltages generated from a current source in a circuit using Kirchhoff's Current Law (KCL). The key findings indicate that for a sinusoidal current source defined as ##i_S=\cos{(t)}##, the voltage ##v## varies between -1 and 2 volts, with specific cases outlined for different voltage ranges. The relevant equations derived include ##v(i_S)=\begin{cases} i_S+1,\ \ \ \ \ i_S\in (0,1) \\ i_S,\ \ \ \ \ i_S\in [-1,0] \end{cases}## and ##v(t)=\begin{cases} \cos{(t)}+1,\ \ \ \ \ t\in (-\pi/2,\pi/2) \\ \cos{(t)},\ \ \ \ \ t\in (\pi/2,3\pi/2) \end{cases}##. The discussion also touches on the notation differences between v-i and V-I characteristics.

PREREQUISITES
  • Understanding of Kirchhoff's Current Law (KCL)
  • Familiarity with sinusoidal functions and their properties
  • Knowledge of voltage-current (v-i) characteristics in circuits
  • Basic circuit analysis techniques
NEXT STEPS
  • Study the implications of sinusoidal current sources in circuit analysis
  • Learn about the graphical representation of v-i characteristics
  • Explore advanced applications of KCL in complex circuits
  • Investigate the differences between time-domain and frequency-domain analysis
USEFUL FOR

Electrical engineers, circuit designers, and students studying analog electronics who are interested in current source behavior and voltage characteristics in circuits.

zenterix
Messages
774
Reaction score
84
Homework Statement
The circuit shown below contains two nonlinear devices and a current source. The characteristics of the two devices are given. Determine the voltage ##v## for
Relevant Equations
(a) ##i_S=1##A, (b) ##i_S=10##A, (c) ##i_S=1\cos{t}##.
Here is the circuit and the v-i characteristics
1702630454250.png


KCL gives us ##i_S=i_1+i_2##.

Thus, (a) and (b) are solved quickly by noting that for ##v\in [0,1]## we have ##i_1+i_2=0## so ##v## can't be in this interval for a positive current.

If we try ##v\in [1,\infty)## then we get ##i_S=1+(-2+v)=v-1##.

Thus, ##i_S=1##A gives ##v=2##V and ##i_S=10##A gives ##v=11##V.

My question is about item (c) where ##i_S=\cos{(t)}##.

What I did was consider four different cases related to the possible value of ##v##. All I did in each case was consider the KCL equation in the context of a restriction on values of ##v##. Note that only cases 2 and 3 are relevant to the solution of (c).

Case 1: ##v\in [1,\infty)##

From the KCL equation, ##i_S=-1+v##, which graphically is

1702630726220.png

and we see that ##v## satisfies our constraint when ##i_S\geq 1##.

Case 2: ##v\in [0,1)##

Here we have simply ##i_S=0##.

Case 3: ##v\in [-1,0)##

Then, ##i_S=v##

Case 4: ##v \in (-\infty, -1)##

Then, ##i_S=-1##

Putting all of this together we have

1702631251429.png


We know that ##i_S## is a sinusoid that varies between -1 and 1. Thus, ##v## takes on values between -1 and 2.

It seems that

$$v(i_S)=\begin{cases} i_S+1,\ \ \ \ \ i_S\in (0,1) \\ i_S,\ \ \ \ \ i_S\in [-1,0] \end{cases}$$

$$v(t)=\begin{cases} \cos{(t)}+1,\ \ \ \ \ t\in (-\pi/2,\pi/2) \\ \cos{(t)},\ \ \ \ \ t\in (\pi/2,3\pi/2) \end{cases}$$

My question is what happens when ##i_S=0##?
 
Physics news on Phys.org
@berkeman What difference does it make if I write v-i characteristics rather than V-I characteristics that you edited my title?

Agarwal, "Foundations of Analog and Digital Circuits":
1702691623949.png
 
zenterix said:
@berkeman What difference does it make if I write v-i characteristics rather than V-I characteristics that you edited my title?
Good question. For stand-alone symbols, it's more common in my experience to use V and I. However if you are writing the time functions explicitly, then ##v(t)## ##i(t)## would probably be more appropriate. Remember that lowercase "i" or "j" is often used for complex exponents.
 
  • Like
Likes   Reactions: zenterix and DaveE

Similar threads

Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
1K
Replies
7
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
916
Replies
4
Views
939
  • · Replies 7 ·
Replies
7
Views
2K
Replies
5
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
13
Views
2K