What Causes Two Voltage Peaks in Magnetic Induction Experiments?

AI Thread Summary
The discussion focuses on the phenomenon of two voltage peaks observed in magnetic induction experiments using a 400-turn coil and a bar magnet. The two peaks are attributed to the north and south poles of the magnet, with the peak corresponding to the end entering the coil last being higher. As the height from which the magnet is dropped increases, the induced voltage decreases. The greatest change in magnetic flux occurs as each end of the magnet passes through the coil. Additionally, flipping the magnet upside down alters the magnetic field orientation, affecting the induced voltage.
ashleyrose03
Messages
1
Reaction score
0
1. In lab, we used a 400-turn coil test apparatus, mounted on an adjustable stand so a bar magnet could be dropped through it from different distances above it. In addition to the apparatus, we also used a voltage sensor and the Pasco interface used to display a graph of the induced voltage on the computer screen.



2. Why are there 2 voltage peaks? Which peak is higher and why? What is the effect of changing height? When does the greatest change of the flux per unit time occur? What happens when the magnet is dropped upside down?




The Attempt at a Solution


For the first question - why are there 2 voltage peaks - I think it is because of the north and south ends of the magnet, but I haven't been able to develop a more substantial answer. For the second question, I think the end that goes in last will be higher, but I'm not sure why. For the third question, I said that voltage changes - as height increases, voltage decreases. For the fourth question, I said the greatest change in flux occurs when each end is going through, but I don't think this makes any sense. And, for the last question, I said that the magnetic fields switch, but again am unsure of this answer.

Thanks for any input!
 
Last edited:
Physics news on Phys.org
Think of the imaginary lines of the magnetic field, coming out of the north pole of the magnet, and going into the south pole. Visualize those lines crossing the surface area of the coil. It's not important how many lines cross that area, but what's important is the rate of change of the number of lines that cross that area. So you want to picture the moments when the number of lines crossing that area is increasing, decreasing, having a minimum, having a maximum. For example, is there a point in time when that rate reaches a minimum for an instant?
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top