What Determines the Direction of Acceleration in Circular Motion?

AI Thread Summary
In circular motion, the direction of acceleration is always towards the center of the circular path, known as centripetal acceleration. This acceleration is a result of the centripetal force, which acts perpendicular to the object's velocity and is necessary to maintain circular motion. The total force acting on the object, according to Newton's second law, is equal to the mass of the object multiplied by its acceleration. The acceleration can be divided into tangential acceleration, which is along the path, and centripetal acceleration, which is directed inward. Understanding these components is crucial for analyzing the dynamics of circular motion.
dumbboy340
Messages
2
Reaction score
1
My friend and i were having a conversation on circular motion and were confused with the direction of acceleration along that circular path.what will be the direction of acceleration of an object which is in circular motion?
Thank$$!
 
Physics news on Phys.org
Newton's second law states that the rate of change of momentum of an object is proportional to the force acting on the object. This means that the acceleration will always be in the same direction as the resultant force. Can you tell me where the centripetal force acts?
 
PWiz said:
Newton's second law states that the rate of change of momentum of an object is proportional to the force acting on the object. This means that the acceleration will always be in the same direction as the resultant force. Can you tell me where the centripetal force acts?

It pulls the object towards the centre of circular path..
 
Precisely. Centripetal acceleration always acts towards the center of the circle.
 
Thanks!
 
Well, the most general circular motion can be described by an angle ##\phi(t)##. Let the circle be in the origin of the ##xy## plane. Then the trajectory is given by
$$\vec{x}(t)=R \begin{pmatrix} \cos[\phi(t)] \\ \sin [\phi(t)] \end{pmatrix}.$$
Now you have to take the 1st and 2nd time derivatives to get velocity and acceleration:
$$\vec{v}(t)=\dot{\vec{x}}(t)=R \dot{\phi}(t) \begin{pmatrix} -\sin[\phi(t)] \\ \cos[\phi(t)] \end{pmatrix},$$
$$\vec{a}(t)=\dot{\vec{v}}(t)=\ddot{\vec{x}}(t) = R \ddot{\phi}(t) \begin{pmatrix} -\sin[\phi(t)] \\ \cos[\phi(t)] \end{pmatrix}-R \dot{\phi}^2(t) \begin{pmatrix} \cos[\phi(t)] \\ \sin [\phi(t)] \end{pmatrix}.$$
As you see, the velocity is (as for any motion) always pointing along the tangent of the trajectory. The acceleration splits into two parts: The tangential acceleration of magnitude (and sign wrt. the direction of the tangent vector) ##a_{\parallel}=R \ddot{\phi}## and one perpendicular, i.e., along the position vector. The component is ##a_{\perp}=-R \dot{\phi}^2 \leq 0##, which means it's always negative, i.e., directed towards the center. The prependicular component is called centripetal acceleration.

According to Newton's Law to maintain this motion you need the total force
$$\vec{F}=m \vec{a}.$$
The part in direction perpendicular to the trajectory is called centripetal force.
 
Last edited:
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Back
Top