What Determines the Direction of Acceleration in Circular Motion?

AI Thread Summary
In circular motion, the direction of acceleration is always towards the center of the circular path, known as centripetal acceleration. This acceleration is a result of the centripetal force, which acts perpendicular to the object's velocity and is necessary to maintain circular motion. The total force acting on the object, according to Newton's second law, is equal to the mass of the object multiplied by its acceleration. The acceleration can be divided into tangential acceleration, which is along the path, and centripetal acceleration, which is directed inward. Understanding these components is crucial for analyzing the dynamics of circular motion.
dumbboy340
Messages
2
Reaction score
1
My friend and i were having a conversation on circular motion and were confused with the direction of acceleration along that circular path.what will be the direction of acceleration of an object which is in circular motion?
Thank$$!
 
Physics news on Phys.org
Newton's second law states that the rate of change of momentum of an object is proportional to the force acting on the object. This means that the acceleration will always be in the same direction as the resultant force. Can you tell me where the centripetal force acts?
 
PWiz said:
Newton's second law states that the rate of change of momentum of an object is proportional to the force acting on the object. This means that the acceleration will always be in the same direction as the resultant force. Can you tell me where the centripetal force acts?

It pulls the object towards the centre of circular path..
 
Precisely. Centripetal acceleration always acts towards the center of the circle.
 
Thanks!
 
Well, the most general circular motion can be described by an angle ##\phi(t)##. Let the circle be in the origin of the ##xy## plane. Then the trajectory is given by
$$\vec{x}(t)=R \begin{pmatrix} \cos[\phi(t)] \\ \sin [\phi(t)] \end{pmatrix}.$$
Now you have to take the 1st and 2nd time derivatives to get velocity and acceleration:
$$\vec{v}(t)=\dot{\vec{x}}(t)=R \dot{\phi}(t) \begin{pmatrix} -\sin[\phi(t)] \\ \cos[\phi(t)] \end{pmatrix},$$
$$\vec{a}(t)=\dot{\vec{v}}(t)=\ddot{\vec{x}}(t) = R \ddot{\phi}(t) \begin{pmatrix} -\sin[\phi(t)] \\ \cos[\phi(t)] \end{pmatrix}-R \dot{\phi}^2(t) \begin{pmatrix} \cos[\phi(t)] \\ \sin [\phi(t)] \end{pmatrix}.$$
As you see, the velocity is (as for any motion) always pointing along the tangent of the trajectory. The acceleration splits into two parts: The tangential acceleration of magnitude (and sign wrt. the direction of the tangent vector) ##a_{\parallel}=R \ddot{\phi}## and one perpendicular, i.e., along the position vector. The component is ##a_{\perp}=-R \dot{\phi}^2 \leq 0##, which means it's always negative, i.e., directed towards the center. The prependicular component is called centripetal acceleration.

According to Newton's Law to maintain this motion you need the total force
$$\vec{F}=m \vec{a}.$$
The part in direction perpendicular to the trajectory is called centripetal force.
 
Last edited:
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top