What Determines the Outcome in These Momentum and Collision Scenarios?

  • Thread starter Thread starter SoulInNeed
  • Start date Start date
  • Tags Tags
    Momentum
AI Thread Summary
In the momentum and collision scenarios discussed, both gliders experience the same magnitude change in momentum due to Newton's third law, despite their different masses. It is clarified that if all forces were internal, the system would not accelerate, indicating the presence of external forces. The collision between the cue ball and the 6 ball is characterized as almost completely elastic, as the total kinetic energy remains constant before and after the collision. The reasoning behind this classification is that the cue ball transfers its velocity to the 6 ball while coming to rest. The discussion emphasizes the principles of momentum conservation and energy transfer in collisions.
SoulInNeed
Messages
64
Reaction score
0
1.1. A 7 kg glider on an air track starts with an initial velocity of 32 m/s and then runs into a 2 kg glider which is initially at rest. During the collision, which glider has a larger magnitude change in momentum? Explain your answer.

2. We observe the center of mass of a system of objects and realize that it is accelerating. Could all of the forces acting on the system be internal forces? Why or why not?

3. You are playing pool. You hit the cue ball into the 6 ball. If there is no spin on the ball and you hit it straight on center, the cue ball stops dead, and the 6 ball rolls off with approximately the same velocity that the cue ball had before. Is the collision between the balls:

Almost completely elastic
Almost completely inelastic
Roughly halfway between completely elastic and completely inelastic
You can't tell from the information given.

4. Explain your answer to the multiple choice question



Homework Equations

K=(1/2)mv^2
p=mv



3. 1. They both experience the same magnitude change, since this is an isolated system, and these two objects exert the same force on each other (in magnitude, but opposite directions, according to Newton's 3rd law).

2. No, if all the forces acting on it were internal, then net force would equal zero, and there would be no acceleration. Thus, there must be some external forces.

3. Almost completely elastic

4. In this example, the total kinetic energy would be the same after the collision, as before the collision. Before the collision, one of the balls is moving with a certain velocity, and one is at rest. After the collision, the other ball has started moving with the same velocity, while the other one is now at rest. The balls are of roughly equal mass, and thus, the initial total kinetic energy is equal to the final total kinetic energy.

Thanks for any help!
 
Physics news on Phys.org
Anyone?
 
Bump again.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top