In the quantum field theory description of elementary particles, we are used to "effective interaction". It's deeply related to the renormalization procedure. Any physical phenomenon must be described using the right variables, or degrees of freedom. The relevant degrees of freedom depend on the scale. At short distances, the fundamental degrees of freedom, quarks and gluons, are revealed, and it is appropriate to use them in our language, we understand what happens most easily by thinking in terms of them. However at long distances, it is not practical to describe strong interaction using its fundamental degrees of freedom. Exactly because of confinement, meson exchange is better suited.
Note that I never referred to glueballs. There are kinematical regimes in which hadron interactions are well described in terms of gluon ladder exchanges, also called Pomerons, or Reggeons, but that even does not qualify as "glueballs".