yungman
- 5,741
- 294
I need to convertx^{2}y''+2xy'+[kx^{2}-n(n+1)]y=0 using y=x^{-\frac{1}{2}}w to a normal Modified Bessel Equation and I cannot get to that. I check many times and I must be having a blind spot!
This is my work:
y=x^{-\frac{1}{2}} w \Rightarrow y'=-\frac{1}{2}x^{-\frac{3}{2}}w+x^{-\frac{1}{2}}w' \Rightarrow y''=\frac{3}{4}x^{-\frac{5}{2}}w-\frac{1}{2}x^{-\frac{3}{2}}w'+x^{-\frac{1}{2}}w''-\frac{1}{2}x^{-\frac{3}{2}}w'
x^{2}y''+2xy'+(kx^{2}-n(n+1))y=0 \Rightarrow
[\frac{3}{4}x^{-\frac{1}{2}}w-\frac{1}{2}x^{\frac{1}{2}}w'+x^{\frac{3}{2}}w''-\frac{1}{2}x^{\frac{1}{2}}w']+[2x^{\frac{1}{2}}w'-x^{-\frac{1}{2}}w]+[kx^{\frac{3}{2}}w-n(n+1)x^{-\frac{1}{2}})w]=0
Grouping w'', w' and w terms:
x^{\frac{3}{2}}w''+(-x^{\frac{1}{2}}+2x^{\frac{1}{2}})w'+(\frac{3}{4}x^{-\frac{1}{2}}-x^{-\frac{1}{2}}+kx^{\frac{3}{2}}-n(n+1)x^{-\frac{1}{2}})w=0
Multiply by x^{\frac{1}{2}} This give:
x^{2}w''+xw'+(\frac{3}{4}-1+kx^{2}-n(n+1))w=0
I can't get the standard Modified Bessel equation because the 3/4-1 in the w term cannot be cancel out.
Please tell me what I did wrong.
Thanks
Alan
This is my work:
y=x^{-\frac{1}{2}} w \Rightarrow y'=-\frac{1}{2}x^{-\frac{3}{2}}w+x^{-\frac{1}{2}}w' \Rightarrow y''=\frac{3}{4}x^{-\frac{5}{2}}w-\frac{1}{2}x^{-\frac{3}{2}}w'+x^{-\frac{1}{2}}w''-\frac{1}{2}x^{-\frac{3}{2}}w'
x^{2}y''+2xy'+(kx^{2}-n(n+1))y=0 \Rightarrow
[\frac{3}{4}x^{-\frac{1}{2}}w-\frac{1}{2}x^{\frac{1}{2}}w'+x^{\frac{3}{2}}w''-\frac{1}{2}x^{\frac{1}{2}}w']+[2x^{\frac{1}{2}}w'-x^{-\frac{1}{2}}w]+[kx^{\frac{3}{2}}w-n(n+1)x^{-\frac{1}{2}})w]=0
Grouping w'', w' and w terms:
x^{\frac{3}{2}}w''+(-x^{\frac{1}{2}}+2x^{\frac{1}{2}})w'+(\frac{3}{4}x^{-\frac{1}{2}}-x^{-\frac{1}{2}}+kx^{\frac{3}{2}}-n(n+1)x^{-\frac{1}{2}})w=0
Multiply by x^{\frac{1}{2}} This give:
x^{2}w''+xw'+(\frac{3}{4}-1+kx^{2}-n(n+1))w=0
I can't get the standard Modified Bessel equation because the 3/4-1 in the w term cannot be cancel out.
Please tell me what I did wrong.
Thanks
Alan
Last edited: