I know how to prove conservation of total probability when the ##H## is Hermitian. So conservation of total probability reads
$$
\int d^3x |\psi (x,t)|^2 = \int d^3x |\psi (x,t=0)|^2 .
$$
In terms of bra-ket notation the above equation reads:
\begin{align*}
<\psi (t) | \psi (t)> &\equiv \int d^3x <\psi (t) |x> <x| \psi (t)>\\
&\equiv \int d^3x |\psi (x,t)|^2 \\
&= \int d^3x |\psi (x,t=0)|^2\\
&= \int d^3x <\psi (0) |x> <x | \psi (0)>\\
&= <\psi (0) | \psi (0)> .
\end{align*}
Let us first take ##H## to be Hermitian. Assuming a dynamical equation:
$$
H |\psi (t) > = i \frac{d}{dt} |\psi (t) >
$$
where ##H## is time-independent, we can solve this with:
$$
|\psi (t) > = \exp (-i t H) |\psi (0)> .
$$
Now if ##H## is Hermitian then conservation of total probability is obvious:
\begin{align*}
<\psi (t) | \psi (t)> & <\psi (0) | \exp (i t H^\dagger) \exp (-itH) |\psi (0)>\\
& <\psi (0) | \exp (i t H) \exp (-itH) |\psi (0)>\\
&= <\psi (0) | \psi (0)> .
\end{align*}
This can also be proven in terms of eigenstates of ##H## (##H |E_n> = E_n |E_n>## where ##E_n## is real as ##H## is Hermitian)...Then
\begin{align*}
|\psi (t)> &= \exp (-itH) |\psi (0)>\\
&= \exp (-itH) \sum_n|E_n><E_n|\psi (0)>\\
&= \sum_n e^{-it E_n} |E_n><E_n| \psi(0)>
\end{align*}
and
\begin{align*}
<\psi (t) | \psi (t)> &= \sum_{m,n} (e^{i E_m t} <\psi (0) | E_m> <E_m|) ( e^{-iE_nt} |E_n> <E_n |\psi (0)>)\\
&= \sum_n <\psi (0) | E_n> <E_n |\psi (0)>\\
&= <\psi (0) | \psi (0)>
\end{align*}
where we used ##<E_m|E_n> = \delta_{mn}##.
Now, what if ##H## is not Hermitian? Take ##H = H_0 + iT##, and assuming again that ##H## is time-independent, then:
\begin{align*}
<\psi (t) | \psi (t)> & <\psi (0) | \exp (i t H^\dagger) \exp (-itH) |\psi (0)>\\
& <\psi (0) | \exp ( t T + i t H_0) \exp (-itH_0 + t T) |\psi (0)> .
\end{align*}
Now if we assume that ##[H_0 , T]= 0##, then first of all we can say that
$$
\exp (-itH_0 + t T) = \exp (itH_0) \exp (t T)
$$
and we can also say that ##H_0## and ##T## have simultaneous eigenstates:
\begin{align*}
H_0 |E_n> &= E_n |E_n>\\
T |E_n> &= T_n |E_n>
\end{align*}
where ##E_n## and ##T_n## are real as ##H## and ##T## are Hermitian. It follows that:
\begin{align*}
|\psi (t)> &= \exp (-itH) |\psi (0)>\\
&= \exp (-itH) \sum_n|E_n><E_n|\psi (0)>\\
&= \exp (t T) \exp (-itH_0) \sum_n|E_n><E_n|\psi (0)>\\
&= \sum_n e^{-it E_n + t T_n} |E_n><E_n| \psi(0)> .
\end{align*}
We could then calculate:
\begin{align*}
<\psi (t) | \psi (t)> &= \sum_{m,n} (e^{i E_m t + t T_m} <\psi (0) | E_m> <E_m|) ( e^{-iE_nt + t T_n} |E_n> <E_n |\psi (0)>)\\
&= \sum_n e^{2 t T_n} <\psi (0) | E_n> <E_n |\psi (0)> .
\end{align*}
which will, for general values of ##t##, not be equal to ##<\psi (0) | \psi (0)>##.I'm not entirely sure how to proceed if ##[H_0 , T] \not= 0##.