What Does Newton's Bucket Paradox Reveal About Motion and Inertia?

  • Thread starter Thread starter Buckethead
  • Start date Start date
  • Tags Tags
    Paradox
Buckethead
Gold Member
Messages
560
Reaction score
38
Hi. First post here. I have no formal math or physics training, but read popular books on physics and am pretty well read as far as that goes. Now for the question.

I'm fascinated by the Newton's Bucket problem and fortunately for me it's cleared my head of the 2 brothers paradox (one on earth, one in ship, ship ages) with regard to which one is considered moving and which is stationary.

For a description of Newton's Bucket, here's a good one:
http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Newton_bucket.html

I've never liked the traditional idea that the brother that is considered moving (and therefore aging) is the one that is accelerating away because once acceleration stops and the ship continues at near light speed, the aging process continues yet the ship is only moving relative to the Earth and not accelerating away from it.

Newton's Bucket solves that problem by inferring that the ship is moving near light speed relative to either the stars or some universal fabric that is static or almost static relative to the stars.

Newton's bucket implies that if the universe were empty (I suppose this would include dark matter and energy) except for the bucket and a single observer, the bucket would seemingly have to behave strangely. For example, if the observer were spinning around the bucket (and the bucket around the observer) but both in the same direction as far as the two axis of rotation are concerned, the bucket could not be said to be spinning and therefore would not exhibit inertial forces or the resultant concave water. If the observer and bucket were spinning opposite to each other, then what? Would the water then become concave relative to the velocity of the observer? Or is a greater mass (or something else altogether) required such as massive galaxies? And if either or both are causing the water to become concave, then what exactly is causing it. I realize the simple answer is inertia, but this paradox implies that inertia would cease to exist in an empty universe and with the observer and bucket moving in the same direction or possibly in different directions as well.

Inertia would have to cease to exist in an empty universe that contained only a bucket of water and a single observer moving in the same direction around it as there would be absolutely no frame of reference with regard to acceleration. With no inertia, one could not feel any effects of acceleration so if the bucket exploded, or the observer sneezed, which would move relative to the other, and which one would age when applied to the two brother paradox.

Glad to have found this forum.
 
Physics news on Phys.org
The answer you seek is the article you linked to.

"...in simple terms, in a universe with no matter there is no gravity. Hence general relativity reduces to special relativity and now all observers agree when the rock system is spinning (i.e. accelerating). "

In other words relativity says rotation is detectable even with one object in an empty universe. Of course this is hard to prove with an experiment, as we do not have a spare empty universe to try it out in :P

Tha article also tries to lend some support to Mach's views (that all inertia is relative to the fixed stars):

"In 1985 further progress by H Pfister and K Braun showed that sufficient centrifugal forces would be induced at the centre of the hollow massive sphere to cause water to form a concave surface in a bucket which is not rotating with respect to the distant stars. Here at last was a form of the symmetry that Mach was seeking. "

A counter argument is this:

Rotate a bucket clockwise (when looking from above) so that the water contained within it has a concave surface. Define the bucket as stationary and atribute the concave surface of the water to the gravitational influence of the all the universes stars orbiting anti-clockwise around said bucket. Now place another rotating bucket alongside the first bucket while the water within it is still spinning. If the first bucket is exactly at the axis of the spinning universe, then the second bucket is not and yet the lowest point of the water in the second bucket is exactly at the centre of its spinning surface. Mach's principle seems to fall apart as soon as we introduce a second bucket.
 
Last edited:
Welcome to these Forums Buckethead, glad too that you found us!

Mach's Principle might not rely on just gravitational influences, as it would in GR.

In the Brans Dicke theory an extra scalar field coupled to matter endows fundamental particles with inertial mass.

Thus introducing the second bucket proves that Mach's Principle is incompatible with GR but it may not be incompatible with an alternative gravitational theory.

Garth
 
Last edited:
"Newton's Bucket" only works in the presence of gravity as kev pointed out.

That said - the pressure in the water increases linearly from 0 to \rho gh no matter where you check from top to bottom. When the bucket/water is spinning uniformly, a new force is added to keep the water from traveling along a linear path. This new force creates another linear pressure gradient that starts from the center of the bucket and increases as you move away from the axis of rotation. The product of the two orthogonal linear pressure gradients leads to a parabolic pressure profile at any fixed height. The water surface assumes a parabolic shape to support both linear pressure gradients simultaneously.

Regards,

Bill
 
kev said:
The answer you seek is the article you linked to.

"...in simple terms, in a universe with no matter there is no gravity. Hence general relativity reduces to special relativity and now all observers agree when the rock system is spinning (i.e. accelerating). "

In other words relativity says rotation is detectable even with one object in an empty universe. Of course this is hard to prove with an experiment, as we do not have a spare empty universe to try it out in :P

But the article just a little before that quote also states that Einstein said that Mach's view was in complete agreement with GR so this conclusion in the article confused me. I'm also confused about how observers could agree that the bucket is spinning. Because the water would go concave? Again, why would it go concave in an empty universe?

Tha article also tries to lend some support to Mach's views (that all inertia is relative to the fixed stars):

"In 1985 further progress by H Pfister and K Braun showed that sufficient centrifugal forces would be induced at the centre of the hollow massive sphere to cause water to form a concave surface in a bucket which is not rotating with respect to the distant stars. Here at last was a form of the symmetry that Mach was seeking. "

Yes, I was trying not to bring this up too soon, but logically, I'm in agreement with this.

A counter argument is this:

Rotate a bucket clockwise (when looking from above) so that the water contained within it has a concave surface. Define the bucket as stationary and atribute the concave surface of the water to the gravitational influence of the all the universes stars orbiting anti-clockwise around said bucket. Now place another rotating bucket alongside the first bucket while the water within it is still spinning. If the first bucket is exactly at the axis of the spinning universe, then the second bucket is not and yet the lowest point of the water in the second bucket is exactly at the centre of its spinning surface. Mach's principle seems to fall apart as soon as we introduce a second bucket.

If the first bucket were indeed at the very axis of the spinning universe and by definition not spinning, then the concaveness of the water would be due to a force (gravity or otherwise) from the stars pulling equally at all sides of the water causing it to rise up the sides of the bucket. (One could no longer state inertia being the cause as the bucket is "not spinning") A second bucket placed off center would also feel this same "pull" and it's water would also rise, but one side would rise higher then the other, having a stronger "pull" on that side. Because of the scales the offset would be infintesimally small, perhaps a plank length. In a universe with non-rotating stars (the real universe) one cannot say that two spinning buckets side by side have their dips in the absolute center of the bucket or that the two buckets have their dips in the same location.[/QUOTE]
 
Garth said:
Mach's Principle might not rely on just gravitational influences, as it would in GR.

In the Brans Dicke theory an extra scalar field coupled to matter endows fundamental particles with inertial mass.

Thus introducing the second bucket proves that Mach's Principle is incompatible with GR but it may not be incompatible with an alternative gravitational theory.

Garth

My gut tells me that gravity can't play much of a part in Mach's Principle as the stars are simply too far away. Doesn't gravity eventually diminish to a single Planck value at which point gravity can be said to not exist at all? Of course there is still the sun and a spinning bucket in our universe may be under it's sole influence. Is there anyway to determine this or is there any theory indicating this? Also, I am a bit confused by the terms tensor vs scaler. Wikipedia didn't help me much here, can you explain this in simple (non-math) terms?
 
Antenna Guy said:
"Newton's Bucket" only works in the presence of gravity as kev pointed out.

It does seem that gravity is the most suspect reason for Mach's principle, but how about a situation of an empty universe with one bucket of water and one observer. If the observer were to grab the bucket and spin it then one of three things would happen. 1) The water would go noticably concave (and simultaneously the observer would also feel a centrifugal force on it's own body) due to both spinning relative to a (non local) absolute space, 2) the water would stay flat even though it was spinning relative to the observer because there is no absolute space. or 3) there would be an infintesimally small inertial force on both the bucket of water (causing it to go ever so slightly concave) and the observer due to both spinning relative to each other and because the delta between the masses of the two objects define an absolute space that is moving more slowly relative to the more massive object then it is to the less massive object.
 
Buckethead:
It does seem that gravity is the most suspect reason for Mach's principle, but how about a situation of an empty universe with one bucket of water and one observer.
What would keep the water in the bucket ? The water would form into a sphere and freeze. It's been pointed out to you that the parabolic surface is due to a combination of lateral and vertical forces, so talking about the surface of the water in your scenario isn't realistic.

I would expect any spinning object to experience stresses because of the spin, and this would happen in any sort of universe, regardless of gravity.
 
Mentz114 said:
What would keep the water in the bucket ? The water would form into a sphere and freeze. It's been pointed out to you that the parabolic surface is due to a combination of lateral and vertical forces, so talking about the surface of the water in your scenario isn't realistic.

I was using the bucket in the spirit of a thought experiment for it's ease of visualization. It is a totally impractical object to use in a real experiment, but the point of my original post is that you can use any practical object here with the same effect. For example two spheres tied together with a string and spun around the axis of the center of the string, or an elastic sphere which would bulge at the center and so on. The actual object is not important here, only the fact that there is centrifugal forces acting on that object.

I would expect any spinning object to experience stresses because of the spin, and this would happen in any sort of universe, regardless of gravity.

Not so if Mach's Principle were true. In an empty universe there would be no stresses on a spinning object because there would be way to know what that object was spinning in reference to, or in other words, whether it was spinning at all. This does have the deeper implication that in an empty universe what we know of as inertia would cease to exist altogether. For example, if you were in a spaceship in an empty universe and flipped the switch to start the rocket engine, it would fire (maybe), but there would be no sensation of forward thrust, the accelerometer onboard would not show any change, you would not feel any G force, and in essense Newton's 3 laws of motion would break down.

Please realize though that I am also trying to figure out here what is an "empty universe". Is it simply a universe void of matter? Of dark matter and dark energy? Of virtual particles? Also, I'm not completely convinced that it's matter that is the real reference point for a spinning object and it's associated stresses (acceleration). It could also be that even an empty universe has some kind of inherent frame of reference that defines that it is static and not moving regardless of whether or not it contains matter, dark matter, and/or dark energy. If this is the case, then I would think a spinning object would still show rotational forces acting on it even in a massless universe. But if this is the case, then it would turn the physics world upside down I would think.
 
  • #10
Buckethead:
Not so if Mach's Principle were true. In an empty universe there would be no stresses on a spinning object because there would be way to know what that object was spinning in reference to, or in other words, whether it was spinning at all. This does have the deeper implication that in an empty universe what we know of as inertia would cease to exist altogether. For example, if you were in a spaceship in an empty universe and flipped the switch to start the rocket engine, it would fire (maybe), but there would be no sensation of forward thrust, the accelerometer onboard would not show any change, you would not feel any G force, and in essense Newton's 3 laws of motion would break down.
OK, from your earlier remarks I can see we are on the same playing field now. I will try and refute the bit I've quoted above.

Firstly, rotation can only be defined for an extended object. A point cannot rotate. So the parts of the extended object have proper spatial relationships with each other and provide a frame in which to define rotation independently of any external reference. I can choose the centre of the rotation as the origin of a frame, and then define a tangential velocity of a piece away from the centre.

The same argument might well do for the acceleration case, but you should bear in mind that your one single object in the universe can only accelerate by ejecting some matter, in which case we have more than one object and the argument short circuits.

[edit] Re-reading this, I'm not 100% convinced by my logic, it would be interesting to hear other views.
 
Last edited:
  • #11
Buckethead said:
The actual object is not important here, only the fact that there is centrifugal forces acting on that object.

"Centrifugal force" is an artificial construct used to balance the centripetal force (i.e. that exerted by the bucket wall) acting on an object that would otherwise travel in a straight line. The closest approximation to a "centrifugal force" would be the tendency of like charges to repel one another - which isn't the sort of thing that keeps a mass rotating at constant radius.

Regards,

Bill
 
  • #12
Hi,

I am aware that Einstein himself concluded that Mach's principle is incompatible with GR as demonstrated by this quote:

"This certainly was a clever idea on Einstein's part, but by June 1918 it had become clear that the De Sitter world does not contain any hidden masses and is thus a genuine counterexample to Mach's principle. Another one of Einstein's attempts to relativize all motion had failed.
Einstein thereupon lost his enthusiasm for Mach's principle. He accepted that motion with respect to the metric field cannot always be translated into motion with respect to other matter."

from this article http://science.jrank.org/pages/11027/Relativity-General-Relativity.html

However, after further reflection Mach's principle is not dismissed by the simple counter example I gave. In that example the second bucket would appear to be rotating along with the distant stars from the point of view of an observer stationary with respect to the water in the first bucket. The second bucket would not therefore be submitted to the "spiralling spacetime" that the water in the first bucket is subjected to, because the second bucket is comoving with the spiralling spacetime/ gravitational field.

A clearer (and fairer) example would be to place the first bucket at the centre of a large rotating turntable. An observer on the turntable could place a second bucket near the rim of the turntable and observe that the water in the second bucket is at rest with with respect to the water of the first bucket and that the water in the second bucket is piled up asymmetrically on the side furthest from the centre of the turntable. If the water in the second bucket is spinning then the centre of the concave depression would indeed be offset from the centre of the bucket. In this fairer second example, Mach's principle does not fail. Can anyone think of a simple example (that is easy to visualise), where Mach's principle fails?
 
Last edited by a moderator:
  • #13
Mentz114 said:
[edit] Re-reading this, I'm not 100% convinced by my logic, it would be interesting to hear other views.

Consider that a fixed volume following a curved path will have different velocities at different points on/within that fixed volume. If the differential velocities become too great, the object flies apart.

The spherical blob of water you mentioned only remains so because of surface tension. If that blob of water were to rotate about some axis, there would have to be more surface area in a plane perpendicular to the axis of rotation to keep the forces in equilibrium - leading to an ellipsoidal shape.

Oddly, a spherical blob of water traveling at a significant fraction of the speed of light would also look like an ellipsoid to a stationary observer - but for a different reason.:smile:

Regards,

Bill
 
  • #14
In this fairer second example, Mach's principle does not fail. Can anyone think of a simple example (that is easy to visualise), where Mach's principle fails?
It fails on Occams razor, surely. There's nothing to explain. All rotating phenomena are accounted for by present dynamics without need for a cosmic frame. Or am I missing something deep here ?
 
  • #15
Mentz114 said:
It fails on Occams razor, surely. There's nothing to explain. All rotating phenomena are accounted for by present dynamics without need for a cosmic frame. Or am I missing something deep here ?

General Relativity can explain any motion including accelerated motion in a straight line in terms of no motion and and complicated gravitational spacetime. For example, if you turn on your rocket motor and accelerate from a standstill to 0.8c, it can be explained in terms of a gravitational field that springs up the instant you turned your rocket motor on and draws the universe towards a black hole behind you while your rocket motor resists the gravitational "pull".

When you drive to work, accelerating and breaking at junctions and experiencing "centrifugal force" as you go round corners, the whole journey can be explained in terms of gravitational fields and complicated accelerations of everything in the universe while you have remained stationary throughout the entire journey. Now this point of view is necessary or we have to accept a notion of absolute motion which is incompatible with Relativity. Occam's razor and even considerations of conservation of energy are not strong enough arguments to support a notion of absolute motion or acceleration.
 
  • #16
Mentz114 said:
Firstly, rotation can only be defined for an extended object. A point cannot rotate. So the parts of the extended object have proper spatial relationships with each other and provide a frame in which to define rotation independently of any external reference. I can choose the centre of the rotation as the origin of a frame, and then define a tangential velocity of a piece away from the centre.

Let's take two bricks tied together by a rope and define that the bricks are not spinning (one face of each brick always faces the other). If there is tension on the rope, then one can say the bricks are revolving about each other. But in an empty universe, this would mean the system would be revolving relative to absolute space. If there is no absolute space, then there could be no tension on the rope since the objects are not rotating relative to anything (not even to each other if their faces are stationary)

The same argument might well do for the acceleration case, but you should bear in mind that your one single object in the universe can only accelerate by ejecting some matter, in which case we have more than one object and the argument short circuits.

The rocket is a matter/anti-matter engine and all exhaust is converted into energy.
 
  • #17
Kev:
Now this point of view is necessary or we have to accept a notion of absolute motion which is incompatible with Relativity.
Well, I don't see at all how that follows from your argument. I can accept absolute rotation, because of the extended object argument, and I think acceleration can always be detected so it's got nothing to do with absolute motion.
 
  • #18
But in an empty universe, this would mean the system would be revolving relative to absolute space.
But the universe is not empty, it has a rope and two bricks in it ! It's like saying 'take a full, empty glass of water ...'.
If I define a frame centred on one brick, the other is rotating around it.

If a system is revolving, it must have spatial extension, and so you can define the motion of one part relative to the other parts. No absolute space required.
 
Last edited:
  • #19
Mentz114 said:
But the universe is not empty, it has a rope and two bricks in it ! It's like saying 'take a full, empty glass of water ...'.
If I define a frame centred on one brick, the other is rotating around it !

The only way you would know that one was rotating around the other would be if the rope were taught. If the rope were limp, then you could conclude one brick was not rotating around the other, but this simply takes the argument back to the beginning of the Newton's bucket problem in the first place. The problem is not determining if there is revolution by looking at the rope. This is a given. The problem is why is the rope taught or limp in the first place when there is no way to determine (in an empty universe) if the objects are revolving around each other. In a universe with no absolute space (or space-time) there is no frame of reference to determine whether a rope should be limp or taught. In other words, if the rope is taught in an empty universe, then this is irrefutable evidence that there is a static frame of reference that is not rotating relative to the rotating objects.

This static frame of reference can be absolute space (Newton's absolute space or Minkowski's absolute space-time) or it could be the total relative position of the stars (Mach's principle) that is the cause of the taught rope. But it has to be one or the other from what I can see. If neither was the cause the rope could never become taught.

I just had a thought: If indeed the culprit were absolute space and not Mach's principle, could the stars be revolving slowly with respect to this absolute space and therefore have an outward inertial force on them causing the universe to accelerate apart? In other words could this explain the accelerating expanding universe without resorting to dark energy (or Einsteins cosmological constant) to explain this expansion?
 
  • #20
Buckethead said:
I just had a thought: If indeed the culprit were absolute space and not Mach's principle, could the stars be revolving slowly with respect to this absolute space and therefore have an outward inertial force on them causing the universe to accelerate apart? In other words could this explain the accelerating expanding universe without resorting to dark energy (or Einsteins cosmological constant) to explain this expansion?


The difficulty with using rotation in explaining the expansion of universe is that the expansion would only occur around the "equator" of the universe and not at the "poles" alligned with the rotation. I don't think it is possible to rotate a sphere about 3 axes simultaneously so that "centrifugal force" appears to act equally in all directions.
 
  • #21
kev said:
The difficulty with using rotation in explaining the expansion of universe is that the expansion would only occur around the "equator" of the universe and not at the "poles" alligned with the rotation. I don't think it is possible to rotate a sphere about 3 axes simultaneously so that "centrifugal force" appears to act equally in all directions.

Ah, yes, I can see this. However, the concept of an expanding universe has some contridictions inherent in it as it is. For example, the popular view of the expanding universe is that of likening it to an inflating balloon where all matter is on the surface of the balloon and inside the baloon is off limits. But does this truly make sense? After all, this is a 3D universe, not a surface as on a baloon, so how does one make sense of equating the two? In the real universe, how can one imagine an expanding universe without a center? Wouldn't you have to start resorting to a 4th dimension or some other exotic explanation? Since I do accept the fact that the universe does not have a center I can also accept that somehow it is possible to have centrifugal forces causing the universe to expand even without a center. Is this logical?
 
  • #22
Buckethead:
Your logic is wrong.
The problem is why is the rope taught or limp in the first place when there is no way to determine (in an empty universe) if the objects are revolving around each other.
Observers on the bricks could determine that the distance between the bricks remains constant over time. Therefore something must be keeping them apart. In the absence of any other candidate, centripetal force is deduced.

In a universe with no absolute space (or space-time) there is no frame of reference to determine whether a rope should be limp or taught.
See above. You just keep ignoring the extended object argument. Why ?

In other words, if the rope is taught in an empty universe..
Again - your universe is not empty - there are two bricks in it, and observers can detect the rotation without reference to any outside frame.
 
  • #23
kev said:
Hi,

"Einstein thereupon lost his enthusiasm for Mach's principle. He accepted that motion with respect to the metric field cannot always be translated into motion with respect to other matter."

Just to be clear, does this mean that Einstein instead accepted Newton's or Minowski's theory on absolute space instead?


Thanks, this is an excellent link. It's pretty heady so I'll have to read it a few times, but it gives an amazing amount of information I need to learn about.


A clearer (and fairer) example would be to place the first bucket at the centre of a large rotating turntable. An observer on the turntable could place a second bucket near the rim of the turntable and observe that the water in the second bucket is at rest with with respect to the water of the first bucket and that the water in the second bucket is piled up asymmetrically on the side furthest from the centre of the turntable. If the water in the second bucket is spinning then the centre of the concave depression would indeed be offset from the centre of the bucket. In this fairer second example, Mach's principle does not fail. Can anyone think of a simple example (that is easy to visualise), where Mach's principle fails?

In order to do this I would think that an experiment would have to be visualized that would highlight the difference between Mach's principle and Newton's absolute universe. Here are the differences that I am aware of:

1. Mach's universe has a center, Newton's does not.

Here are the similarities:

1. Both are static as in their position in space
2. Both are static as in their rotation as a whole

One experiment I can think of off hand would be to prove if the expansion of the universe were due to centrifugal forces caused by the stars as a whole rotating with respect to Newton's absolute universe (if this were possible, see Kevs post about this).
 
Last edited by a moderator:
  • #24
Mentz114 said:
Buckethead:
Your logic is wrong.

Observers on the bricks could determine that the distance between the bricks remains constant over time. Therefore something must be keeping them apart. In the absence of any other candidate, centripetal force is deduced.

See above. You just keep ignoring the extended object argument. Why ?


Again - your universe is not empty - there are two bricks in it, and observers can detect the rotation without reference to any outside frame.

I agree with what you are saying but ONLY in a universe with either 1) Newton's absolute space (or Minowski's absolute space-time) OR Mach's universe of Stars. I am postulating a third type of universe that you are not taking into account and that is a universe with NEITHER of these two types of space. I am trying to identify the laws of physics (Newton's laws of motion to be specific) that would change in a universe where NO absolute space (either Mach's or Newton/Minowski's) is the norm.

In this type of universe without any static space then there would be NO taught rope regardless of whether the extended objects were revolving around each other or not. Since there is no taught rope, there can be no way to determine if the objects are revolving.
 
  • #25
Buckethead:

I am trying to identify the laws of physics (Newton's laws of motion to be specific) that would change in a universe where NO absolute space (either Mach's or Newton/Minowski's) is the norm.
According to special relativity, all the laws are the same in all frames, and there is no absolute space-time.

Ok, I'll stop banging on about the extended object.

I read the article in the link and I'd like to point out something about GR.

The form of the metric tensor describing a non-rotating black hole is ( Schwarzschild )-

\[ \left[ \begin{array}{cccc}<br /> -g_{00} &amp; 0 &amp; 0 &amp; 0\\\<br /> 0 &amp; g_{11} &amp; 0 &amp; 0\\\<br /> 0 &amp; 0 &amp; g_{22} &amp; 0\\\<br /> 0 &amp; 0 &amp; 0 &amp; g_{33}\end{array} \right]\]

and the form of the metric for a rotating black hole is ( Kerr ) -

\[ \left[ \begin{array}{cccc}<br /> -g_{00} &amp; 0 &amp; 0 &amp; g_{03}\\\<br /> 0 &amp; g_{11} &amp; 0 &amp; 0\\\<br /> 0 &amp; 0 &amp; g_{22} &amp; 0\\\<br /> g_{03} &amp; 0 &amp; 0 &amp; g_{33}\end{array} \right]\]

So, it is possible to introduce rotation into the metric in a way that does not rely on anything external. Is this 'absolute' rotation ?

The Kerr metric was not discovered until about 1963, maybe after DeSitter and Einstein had their argument.
 
Last edited:
  • #26
Regarding rotating universes you should look for the Godel metric, which describes a universe with matter which is rotating in some absolute sense. This article is good, especially on the optical effects. Things would look very different !

en.wikipedia.org/wiki/Gödel_metric
 
  • #27
Buckethead said:
Ah, yes, I can see this. However, the concept of an expanding universe has some contridictions inherent in it as it is. For example, the popular view of the expanding universe is that of likening it to an inflating balloon where all matter is on the surface of the balloon and inside the baloon is off limits. But does this truly make sense? After all, this is a 3D universe, not a surface as on a baloon, so how does one make sense of equating the two? In the real universe, how can one imagine an expanding universe without a center? Wouldn't you have to start resorting to a 4th dimension or some other exotic explanation?

The balloon anology refers to surface of the balloon as seen by imaginary two dimensional creatures. These 2D creatures cannot see a centre to their universe because they can not see the 3rd dimension. The spacetime of general relativity does have 4 dimensions. Three spatial plus one temporal. We 3 dimensional creatures can not see a centre to the 4 dimensional spacetime we live in. Also if we postulate an infinite universe with infinite mass that has no edges then we can not define a centre to it, but general relativity can have have a centerless universe without requiring infinite mass.


Buckethead said:
Since I do accept the fact that the universe does not have a center I can also accept that somehow it is possible to have centrifugal forces causing the universe to expand even without a center. Is this logical?

There is some logic to this statement, but I am not sure how to prove it mathematically one way or the other. :(
 
  • #28
It occurred to me that a Machian universe is a sort of democracy of mass. The mass of the "fixed stars" of mach represent the majority vote and define a sort of absolute reference frame. I think it is this implication of an absolute inertial reference frame that caused Einstein to ultimately reject the Machian viewpoint and declare it is incompatible with general relativity.

To see this on a smaller scale imagine a universe that comprises just the Earth and the Moon. Now the Earth seen from the Moon has a slightly bulged shape. Since the Earth represents the majority of mass in our reduced universe then it is declared stationary in the machian viewpoint. The bulged shape of the Earth is caused by a rotating or spiralling gravity "field". Einstein required that gravity (space curvature) is shaped by mass.Since the only objects of any significant size in this universe are the Earth and the Moon and since the Earth is considered stationary (by Mach) then the gravity "field" that is causing the stationary Earth to bulge at the equator can only be generated by the orbiting moon. The mass and motion of the Moon is insufficient to fully account for the bulge of the Earth and I imagine it this sort of reasoning that makes the Mach's principle incompatible with general relativity.

Now if we find a reference frame in which the total angular momentum of our reduced universe is zero then (I'm assuming) the gravitational curvature and the paths of the gravitational bodies can be all be accounted for by the combined gravitational effects of all the masses.


The subtle difference between the viewpoints of Mach and Einstein is that while the inertia of the water in the bucket is defined by the fixed stars in Mach's view, it is defined by the combined masses and motions of the stars and the bucket in Einstein's view.
 
Last edited:
  • #29
I'd say Einstein was too into realism. If you have a universe empty but for a bucket (and the Earth of course), and the water dips down at the center, then the Earth/bucket system is rotating, and if it doesn't, then it isn't. What's the big deal, these are just words we invented. Does anyone really think that an Earth-bucket in an empty universe could not have its water dip down in the center? Why do we think there has to be a way for the universe to "know" the bucket is rotating-- it won't anyway, it is only we who can say that.
 
Last edited:
  • #30
Ken G said:
I'd say Einstein was too into realism. If you have a universe empty but for a bucket, and the water dips down at the center, then the bucket is rotating, and if it doesn't, then it isn't. What's the big deal, these are just words we invented. Why do we think there has to be a way for the universe to "know" the bucket is rotating-- it won't anyway, it is only we who can say that.


I guess the deal is being able to predict what would happen in this sort of experiment.

Make a huge concrete ring and suspend it so that the ring is parallel to the ground. Place a non rotating bucket of non rotating water water on the ground in the centre of the concrete ring. Accelerate the ring to a high angular velocity. The surface of the water in the non rotating bucket should start going concave due the curvature of space induced by the rotating concrete ring. I imagine one day they will be able to carry out some sort of real experiment based on this principle or observe it cosmologically.

Better still, lay a huge circular banked railway track and fill the track with railway cars full of concrete. The surface of the water in a stationary bucket in the centre of the track will start to dish as the railway cars accelerate around the track.
 
Last edited:
  • #31
kev said:
I guess the deal is being able to predict what would happen in this sort of experiment.
But that's why I asked if anyone really believed you could not get a dip in a bucket in an otherwise empty universe. I certainly don't believe it. So if you could, then you have to use the bucket to tell you whether or not it's rotating-- the effort to invert that logic is the source of the problem (that's where philosophy enters and muddies the science).
Make a huge concrete ring and suspend it so that the ring is parallel to the ground. Place a non rotating bucket of non rotating water water on the ground in the centre of the concrete ring. Accelerate the ring to a high angular velocity. The surface of the water in the non rotating bucket should start going concave due the curvature of space induced by the rotating concrete ring. I imagine one day they will be able to carry out some sort of real experiment based on this principle or observe it cosmologically.
General relativity predicts the result of that experiment. Why do we need Mach? Don't get me wrong, I realize that asking the questions Mach did helped Einstein think "outside the box". That is generally what I view philosophy is for-- to free our thinking to see what the possibilities are. But we tend to cling to it long after it has ceased its usefulness, and mistake it for part of the theory.
 
Last edited:
  • #32
Ken G said:
But that's why I asked if anyone really believed you could not get a dip in a bucket in an otherwise empty universe. I certainly don't believe it. So if you could, then you have to use the bucket to tell you whether or not it's rotating-- the effort to invert that logic is the source of the problem (that's where philosophy enters and muddies the science).
General relativity predicts the result of that experiment. Why do we need Mach?


I am just trying to clarify (in my own mind) where Mach and Einstein differ. I get the impression that the mainstream view is that GR and Mach's principle are not compatible while a lot of laypersons and physics popularisations think they are compatible. I do not seem to be able to find a definitive and easy to visulise resolution of the matter.

In other words complete the sentence -

Mach's principle does not work because ...
 
  • #33
kev said:
Mach's principle does not work because ...
... GR works.

They are incompatible re the double rotating bucket gedanken.

Alternatively GR 'does not work' (i.e. may need to be modified) because Mach's principle works.

The jury may still be out...

Garth
 
Last edited:
  • #34
Einstein and DeSitter disagreed about the absolute nature of rotation and Einstein eventually agreed there was an element of absolute space in GR. I think he was wrong and should have stuck to his original view. Rotation is not relative, and transforming into the rotating frame does not remove the centripetal acceleration felt by observers at rest in the rotating frame. A non-rotating bucket within a rotating cosmos is not the same situation at all, and is modeled correctly by GR.

Mach's principle is not applicable or relevant to Newton's bucket.
 
  • #35
The way I see the difference is that GR is a boundary value problem, because it is a differential theory. Mach's principle is a philosophical statement of how reality must behave. Since a boundary value problem always has the degrees of freedom of what is going on at the boundary, it puts less constraints on the situation than does Mach's principle. So I see the inconsistency between the two as coming from the fact that if the mass is within the solution volume, you still need a boundary condition to do GR whereas Mach's principle indicates the reality is completely determined. That doesn't seem like a big problem unless the boundary condition GR would need in order to work seems unnatural in some way. But if you go to hypothetical situations, like an empty universe, then Mach's principle says reality is undetermined, whereas GR says reality is determined by experiments that determine the appropriate boundary conditions. If that's a fair way to say it, then the incompatibility is the incompatibility of science and philosophy.
 
  • #36
I don't know much about Mach's principle, but discussions about it always seem to turn into these rather silly "otherwise empty universe" discussions, which makes me question the value of Mach's principle.

Does Mach's principle have any concrete testable predictions? If not, what is its value?
 
  • #37
DaleSpam said:
Does Mach's principle have any concrete testable predictions? If not, what is its value?

In one version of the principle it suggests the Newtonian Gravitational constant is not actually constant but varies from place to place.

The Brans Dicke theory, which fully incorporates Mach's principle into GR, made observational predictions that do not seem to be consistent with observation.

Garth
 
  • #38
Buckethead said:
Hi. First post here. I have no formal math or physics training, but read popular books on physics and am pretty well read as far as that goes. Now for the question.

I'm fascinated by the Newton's Bucket problem and fortunately for me it's cleared my head of the 2 brothers paradox (one on earth, one in ship, ship ages) with regard to which one is considered moving and which is stationary.

For a description of Newton's Bucket, here's a good one:
http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Newton_bucket.html

I've never liked the traditional idea that the brother that is considered moving (and therefore aging) is the one that is accelerating away because once acceleration stops and the ship continues at near light speed, the aging process continues yet the ship is only moving relative to the Earth and not accelerating away from it.

Newton's Bucket solves that problem by inferring that the ship is moving near light speed relative to either the stars or some universal fabric that is static or almost static relative to the stars.

Newton's bucket implies that if the universe were empty (I suppose this would include dark matter and energy) except for the bucket and a single observer, the bucket would seemingly have to behave strangely. For example, if the observer were spinning around the bucket (and the bucket around the observer) but both in the same direction as far as the two axis of rotation are concerned, the bucket could not be said to be spinning and therefore would not exhibit inertial forces or the resultant concave water. If the observer and bucket were spinning opposite to each other, then what? Would the water then become concave relative to the velocity of the observer? Or is a greater mass (or something else altogether) required such as massive galaxies? And if either or both are causing the water to become concave, then what exactly is causing it. I realize the simple answer is inertia, but this paradox implies that inertia would cease to exist in an empty universe and with the observer and bucket moving in the same direction or possibly in different directions as well.

Inertia would have to cease to exist in an empty universe that contained only a bucket of water and a single observer moving in the same direction around it as there would be absolutely no frame of reference with regard to acceleration. With no inertia, one could not feel any effects of acceleration so if the bucket exploded, or the observer sneezed, which would move relative to the other, and which one would age when applied to the two brother paradox.

Glad to have found this forum.

The way I interpret 'Newton's bucket' experiment is that it does indeed show that there is some absolute reference and that relative motions are not all that matter. Now I don't think, it automatically implies the existence of absolute space, as Newton and most contemporaries thought. Indeed as Einstein showed, the absolute reference turned out to be space-time rather than space.

In space-time, only relative velocities matter but accelerations are still absolute. Hence, that should explain Newton's bucket experiment. There is no ambiguity about whether water in a bucket is rotating or not because rotation is an accelerated motion. Hence, it has nothing to do with gravitational pull of the rest of the universe and so a concave water shape should result in a rotated bucket even if its the only object in the universe.
 
  • #39
aaj said:
The way I interpret 'Newton's bucket' experiment is that it does indeed show that there is some absolute reference and that relative motions are not all that matter. Now I don't think, it automatically implies the existence of absolute space, as Newton and most contemporaries thought. Indeed as Einstein showed, the absolute reference turned out to be space-time rather than space.

In space-time, only relative velocities matter but accelerations are still absolute. Hence, that should explain Newton's bucket experiment. There is no ambiguity about whether water in a bucket is rotating or not because rotation is an accelerated motion. Hence, it has nothing to do with gravitational pull of the rest of the universe and so a concave water shape should result in a rotated bucket even if its the only object in the universe.

Can you be sure acceleration is absolute?

Calculations using general relativity have shown that a massive rotating shell would induce a force that causes the surface of stationary water in a stationary bucket at its centre to curve exactly as if the if the water was rotating. The relativistic principle suggests there is no measurement that can destinguish a rotating bucket in a universe of of stationary stars from a stationary bucket in a universe of rotating stars. The mass of the rotating stars will drag spacetime as per the Lense Therring effect causing the water in the stationary bucket to climb up the sides of the bucket as if it was rotating. The stars will not be thrown outward by centripetal forces because the spacetime is co-moving with the stars.

Now imagine a universe with a one stationary bucket and one atom at the edge of the universe visible from the bucket. The atom is rotating around the bucket at very high speed but there is no way that the mass of a single atom at such a great distance can induce any significant gravitational field or curvature in the surface of the water in the bucket. By invoking the principle of relativity, rotating the bucket and water relative to the distant stationary atom will not induce any curvature in the surface of the water. The single atom is an aproximation of an "otherwise empty universe"

The same can be said for linear acceleration. There is no difference between a rocket accelerating in a stationary universe and a stationary rocket in an accelerating universe. The rocket engine is simply resisting the gravitational field that is drawing the rest of the universe into an event horizon behind the rocket.

Further evidence that gravitational fields might be the source of inertia is this. A perfectly elastic ball is placed in a box and set bouncing from side to side horizontally. The box is far out in space. As the box is gradually lowered towards a large massive body we would expect that if the inertial mass is increasing with increasing proximity to a massive body and if momentum is conserved, that the ball would slow down. That is exactly what we do observe (from a distance). When we bring the box back up we note the ball has speeded up again. Similar experiments accelerating objects horizontally would show they behave as if they have greater inertial mass lower down nearer the massive body, suggesting Mach's principle of inertia being a function of the total gravity of the all the surrounding mass is not far off the mark. Now when we take the box infinitely far away from the massive body (or a long way away, anyway) that the ball still has inertia seeming to contradict Mach's principle. The solution is that in our universe, you can not get infinitely far from any massive body without getting closer to other massive bodies. There is always a "zero point" gravitational field wherever you are and although we might find it mathematically convenient to call this residual gravitational potential zero, it is not in fact zero and this could account for baryon particles having a non zero inertial mass, when seemingly at a zero gravitational potential. Even in the largest of voids, the surrounding mass ensures the gravitational potential is never zero and so the inertial mass is never zero.

So my argument is that if we take a take an informal description of Mach's principle as "Inertia of a body is a property of its motion relative to the fixed stars" and restate it as "Inertia of a body is a property of its motion relative to the spacetime determined by the distribution and motion of matter in space" then Mach's principle is pretty compatible with relativity. The important notion is that inertia is not an intrinsic property of mass, independent of its surroundings.
 
  • #40
kev said:
The important notion is that inertia is not an intrinsic property of mass, independent of its surroundings.

This is interesting. Just as a curiousity, has there been any experiment conducted to verify this notion? I haven't thought over this much but should it not be possible to simply test this out by performing an experiment on an object, once with no heavy object close by and once more with many heavy objects in its immediate surrounding? By observing whether the object responds differently to the same force, it might be possible to test out the hypothesis that inertia is not an intrinsic property of mass. Ofcourse, I can quite guess that technical limitations might be a big reason why we cannot achieve the sensitivity required for the above kind of experiment.

On another line of thought, if the hypothesis of inertia not being an intrinsic property of mass is true, how come we have never quite observed this effect through astronomical observations? I mean galaxies also move through space. Has it ever been observed that the inertia of an entire cluster of stars has changed simply because of their changed position in the universe? If it hasn't and they have changed position, it would imply that the mass density of the universe is pretty even in all directions.
 
  • #41
The idea that inertia is a reaction between mass and some field is explored in this paper, which is published in Physics Letters A and on the arXiv

http://arxiv.org/abs/physics/9802031

The authors ascribe inertia to the EM ZPF, but actually it would work with any ZPF that interacted with baryons. here's a brief extract -

If correct, this concept would substitute for Mach’s principle and imply that no further mass-giving Higgs-type fields may be required to explain the inertia of material objects, although extensions to include the zero-point fields of the other fundamental interactions may be necessary for a complete theory of inertia.

Which sounds like Kev's proposal.
 
  • #42
kev said:
The important notion is that inertia is not an intrinsic property of mass, independent of its surroundings.

Its also intetresting to note that the above hypothesis seeks to make a clear distinction between mass and inertia. Most common definitions of mass itself are in terms of inertia. For instance, 1kg of mass may be defined as that mass which accelerates at 1m/s^2 in response to a force of 1N. Now if we delink mass and inertia as per the quoted hypothesis, how then do we define mass?

I am guessing it would be in terms of the ability to curve spacetime. So depending on the surroundings, an object's inertia may be different but are we saying that its ability to curve spacetime around itself would be unaffected?

So would a universe consisting of only one atom still be curved in the vicinity of the atom?

It seems we would then we forced to have to have two masses for each object. a) The Inertial mass which would be a measure of the inertia of the object and which the hypothesis says depends on its surroundings and b) the curvature mass which would be a measure of the ability of the object to curve spacetime.

But then, gravity is a manifestation of curvature so we are harking back tothe times when we had the concept of inertial and gravitational masses. And so many experiments have showed that these two masses have always been found to be the same with ever increasing accuracy. If this is the case, we are left with two conclusions:

a) The two masses seem to be equal because inertia is indeed and intrinsic property of the body and is determined by the same quantity that curves spacetime and is unaffected by its surroundings

b) Inertia may be determined by surroundings but we have never noticed any fluctuation because the universe is very even in all directions to an astonishing degree.

But then point b still begs the question why it is that the quantity which determines inertia is so so nearly equal to the quantity which is responsible for curving spactime in the vicinity of the object?
 
  • #43
aaj
But then point b still begs the question why it is that the quantity which determines inertia is so so nearly equal to the quantity which is responsible for curving spactime in the vicinity of the object?

If the ZPF hypothesis is true, then both inertia and gravity result from the very same cancellation effect - and so must be identical. This is one of the best points about this hypothesis, unification of gravitational mass and inertial mass.
 
Last edited:
  • #44
What bothers me about this idea is that it seems to require that the presence of gravity alters the physics of a system in a way other than due its tidal effects, which seems to violate the principle of equivalence. In other words, if you put a box around a system, then the effect of gravity on the internal workings of that system should only come in via its tidal influences. But if you put a force on a point particle in that box, and claim that gravity from external sources are responsible for the way it accelerates, then you cannot have the equivalence principle. Note there is not a problem with kev's thought experiment about a ball bouncing back and forth in a box, because tidal stresses across that box must be responsible for the behavior observed, but inertia itself is a property of a point particle.
 
  • #45
I agree that it would be a major flaw if the gravitational mass and inertial mass changed according to some local field strength. I think the authors of the cited paper assume an absolute vacuum, one that looks the same to all inertial observers and is in fact the source of inertial and gravitational effects when interacting with matter.

I'm keeping an open mind about this. No one else has attempted to 'explain' F=ma and it is an ingenious idea that maybe could give rise to a decent theory.
 
  • #46
I see something of a "Catch 22" here. If it responds to a local field strength, inertia seems to refute relativity, but at least you have a falsifiable theory. If it does not, then how will you ever establish the connection? It sounds a lot like the claim "the total distribution of mass in the universe is why the speed of light is what it is"-- how could anyone falsify that claim? I see Mach's principle as a way to break one's mind out of a box that might limit you to missing a theory like general relativity, but having the theory of GR, I'm not sure where we need Mach's principle. It's true that GR is a differential theory, so needs the external application of some kind of boundary conditions (does it not?), and one might then say we use Mach to inform the boundary conditions. But even that would be backwards logic-- we always apply whatever boundary conditions that seem to work, so if Mach hadn't worked we would use a different boundary condition. It doesn't establish that Mach informs our boundary condition-- getting results that agree with experiment do that. This is the fundamental problem of mixing philosophical principles into physics-- science just isn't done that way, except in the "inspiration" phase.
 
Last edited:
  • #47
Ken G said:
..., but at least you have a falsifiable theory.

We aren't talking about fully-fledged theory but an hypothesis. When I said a 'decent' theory, I mean it must be falsifiable. I don't consider what Haisch et al have presented to anything like correct.

This is the fundamental problem of mixing philosophical principles into physics-- science just isn't done that way, except in the "inspiration" phase.

If you're talking about Mach's conjecture, I agree. I've never seen any use for it.
 
Last edited:
  • #48
kev said:
Can you be sure acceleration is absolute?

Calculations using general relativity have shown that a massive rotating shell would induce a force that causes the surface of stationary water in a stationary bucket at its centre to curve exactly as if the if the water was rotating. The relativistic principle suggests there is no measurement that can destinguish a rotating bucket in a universe of of stationary stars from a stationary bucket in a universe of rotating stars. The mass of the rotating stars will drag spacetime as per the Lense Therring effect causing the water in the stationary bucket to climb up the sides of the bucket as if it was rotating. The stars will not be thrown outward by centripetal forces because the spacetime is co-moving with the stars.

This last sentance is astonishing to me, a real eye opener. If spacetime moves with the stars, then doesn't this automatically imply that the spatial location of the stars (by stars I do mean all matter in the universe) and spacetime itself are one in the same thing? Doesn't this mean that Mach's principle and the idea of absolute spacetime are the same thing?

Now imagine a universe with a one stationary bucket and one atom at the edge of the universe visible from the bucket. The atom is rotating around the bucket at very high speed but there is no way that the mass of a single atom at such a great distance can induce any significant gravitational field or curvature in the surface of the water in the bucket. By invoking the principle of relativity, rotating the bucket and water relative to the distant stationary atom will not induce any curvature in the surface of the water. The single atom is an aproximation of an "otherwise empty universe"

I'm not convinced that there is a relationship between gravity and absolute spacetime/Mach's principle as wouldn't we see a change in inertia if we were far out in space away from strong forces of gravity? Whatever spacetime is "made of" it has to be fairly uniform across the universe. It must be influenced by either virtual particles, dark energy, dark matter, or some strange type of pervasive field.

It seems about half of the posts here have argued that a bucket can be said to spin if and only if the water is climbing it's side independant of whether or not there is other matter in the universe and I'm assuming also independant of any absolute spacetime (if it can exist without matter). But in the very minimum, an absolute spacetime must exist or the idea of rotation reduces to simply a "seemingly stationary bucket with water in a concave shape". I could not conclude that anything was spinning from this observation. This would lead me to believe that some outside force such as gravity or otherwise was surrounding the bucket and forcing the water into this shape. This is the reason I do not think that a bucket in an empty universe (or in a universe without an absolute spacetime) can have a concave shape. This implies a lack of inertia (no more Newton's laws).

This lack of inertia does indeed bring up some additional strange observations. For example, what would happen if you shone a laser beam? If nothing unusual happened (it's light propagated out in a straight line) then we have a good argument as to why the water should go concave. If a straight line were definable by a laser, then certainly a bucket could be said to spin (and could be observed going concave) as it's water molocules tried to follow the path of the laser light. But without the presence of absolute spacetime, light could not propagate in a line or in any definable fashion.

It seems to me there can be nothing logical happening to light, a spinning bucket, or a linearly accelerating object unless these things are happening in a frame of reference and in the very least this frame of reference must be a grid of spacetime and at most could be the relative position of all matter in the universe.

To get back to Kev's comment about the stars not being affected by centrifugal forces: If this were indeed true, then spacetime's rotational velocity is defined by the location of the matter in the universe and follows it exactly. This would imply that Mach's principle is true. If Kev's comment were not true, then this would imply that spacetime and the matter in the universe were rotating relative to each other and centrifugal forces would be acting on stars in strange ways and it would also imply that spacetime must be made up of some form of matter or field that defined a grid by which inertia is subject. I'm not sure I can buy that, but I suppose it's possible.

I wish I had time to respond to more of the comments in this thread, but I am very much enjoying all that I am reading and I appreciate that this thread is being kept alive.
 
  • #49
Buckethead said:
Hi. First post here. I have no formal math or physics training, but read popular books on physics and am pretty well read as far as that goes. Now for the question.

I'm fascinated by the Newton's Bucket problem and fortunately for me it's cleared my head of the 2 brothers paradox (one on earth, one in ship, ship ages) with regard to which one is considered moving and which is stationary.

For a description of Newton's Bucket, here's a good one:
http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Newton_bucket.html

I've never liked the traditional idea that the brother that is considered moving (and therefore aging) is the one that is accelerating away because once acceleration stops and the ship continues at near light speed, the aging process continues yet the ship is only moving relative to the Earth and not accelerating away from it.

Newton's Bucket solves that problem by inferring that the ship is moving near light speed relative to either the stars or some universal fabric that is static or almost static relative to the stars.

Newton's bucket implies that if the universe were empty (I suppose this would include dark matter and energy) except for the bucket and a single observer, the bucket would seemingly have to behave strangely. For example, if the observer were spinning around the bucket (and the bucket around the observer) but both in the same direction as far as the two axis of rotation are concerned, the bucket could not be said to be spinning and therefore would not exhibit inertial forces or the resultant concave water. If the observer and bucket were spinning opposite to each other, then what? Would the water then become concave relative to the velocity of the observer? Or is a greater mass (or something else altogether) required such as massive galaxies? And if either or both are causing the water to become concave, then what exactly is causing it. I realize the simple answer is inertia, but this paradox implies that inertia would cease to exist in an empty universe and with the observer and bucket moving in the same direction or possibly in different directions as well.

Inertia would have to cease to exist in an empty universe that contained only a bucket of water and a single observer moving in the same direction around it as there would be absolutely no frame of reference with regard to acceleration. With no inertia, one could not feel any effects of acceleration so if the bucket exploded, or the observer sneezed, which would move relative to the other, and which one would age when applied to the two brother paradox.

Glad to have found this forum.

Dear all
let us view it in another angle.a liquid(water here)will exert presurre in all direction to the walls of the container(radially).when the bucket starts rotating,the extreme end molecule of water which is pressed against the wall will be moved together with the wall,because it is pressed against the wall,this in turn will be transferred to the next molecule and so on...upto the centre.
when a molecule near to centre starts to move in a circular path,it will exert more pressure tangentially and in fact ,it will be tranfered to the next layer of molecules(which is already pushing the other layer molecule due to circular motion) and forces added so on... and that force is not enough to break the wall of the bucket,but enough to raise the external molecule to a small height against the atmospheric pressure and gravity which is pulling it down.
When this external molecule is elevated,the penultimate will occuppy its space and so on.ultimately the surface will become concave..
Now when even the bucket stops rotating,the water will continue spinning because the water molecules still possesses kinetic energy and the pressure exerted to the walls of bucket is tangetial instead of normal as in the begining.gravity and atmospheric pressure of course will take some time to act against this spinning ,ultimately to halt it
Please correct me if i am wrong in understanding actual problem
 
Last edited:
  • #50
newTonn said:
Dear all
let us view it in another angle.a liquid(water here)will exert presurre in all direction to the walls of the container(radially).when the bucket starts rotating,the extreme end molecule of water which is pressed against the wall will be moved together with the wall,because it is pressed against the wall,this in turn will be transferred to the next molecule and so on...upto the centre.

This is the reason that water flows up the side of the bucket, but this is not the problem. The problem is determining how the water knows that it is moving in the first place and hence moving up the side of the bucket.
 
Back
Top