What exactly does it mean for two points to be barycentrically independent?

Mathguy15
Messages
68
Reaction score
0
Hello, I've been studying some linear algebra, and i am stuck on a certain definition.
The book i am using says that points{p0,p1,...,pk} in a vector space V are barycentrically independent if and only if the vectors {p1-p0,p2-p0,...,pk-p0} are linearly independent. The problem i have is the definition for two points. The definition in the book seems to work only for k≥2, but what about k=1? I'm sorry if I am missing something completely obvious, and i'll check more carefully if this is the case.



mathguy15
 
Physics news on Phys.org
Two (distinct) points are automatically barycentrically independent, in the same way that a single (nonzero) point in automatically linearly independent
 
so two points are barycentrically independent if and only if the vector they form is nonzero?
 
Yes!
 
Thanks!
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top