What exactly is Einstein's famous E = MC^2

  • Thread starter Thread starter shadae758
  • Start date Start date
shadae758
Messages
1
Reaction score
0
With the famous news of the LHC, I had did a little research about how it works. Apparently, it works via energy mass equivalence.

After dancing around the net, I had a brief idea of how E = MC^2 came about. But still, it isn't very clear.

Exactly how does the speed of light come into play?

I know C meant constant, and speed of light just happens to be that constant, but how did we arrive on that constant? What makes it so sure that this C^2 is the relationship?

Would appreciate a layman answer, preferably with less maths.
 
Physics news on Phys.org
FAQ: Where does E=mc2 come from?

Einstein found this result in a 1905 paper, titled "Does the inertia of a body depend upon its energy content?" This paper is very short and readable, and is available online. A summary of the argument is as follows. Define a frame of reference A, and let an object O, initially at rest in this frame, emit two flashes of light in opposite directions. Now define another frame of reference B, in motion relative to A along the same axis as the one along which the light was emitted. Then in order to preserve conservation of energy in both frames, we are forced to attribute a different inertial mass to O before and after it emits the light. The interpretation is that mass and energy are equivalent. By giving up a quantity of energy E, the object has reduced its mass by an amount E/c2, where c is the speed of light.

Why does c occur in the equation? Although Einstein's original derivation happens to involve the speed of light, E=mc2 can be derived without talking about light at all. One can derive the Lorentz transformations using a set of postulates that don't say anything about light (see, e.g., Rindler 1979). The constant c is then interpreted simply as the maximum speed of causality, not necessarily the speed of light. We construct the momentum four-vector of a particle in the obvious way, by multiplying its mass by its four-velocity. (This construction is unique in the sense that there is no other rank-1 tensor with units of momentum that can be formed from m and v. The only way to form any other candidate is to bring in other quantities, such a constant with units of mass, or the acceleration vector. Such possibilities have physically unacceptable properties, such as violating additivity or causality.) We find that this four-vector's norm equals E2-p2c2, and can be interpreted as m2c4, where m is the particle's rest mass. In the case where the particle is at rest, p=0, and we recover E=mc2.

A. Einstein, Annalen der Physik. 18 (1905) 639, available online at http://www.fourmilab.ch/etexts/einstein/E_mc2/www/

Rindler, Essential Relativity: Special, General, and Cosmological, 1979, p. 51
 
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
Thread 'Dirac's integral for the energy-momentum of the gravitational field'
See Dirac's brief treatment of the energy-momentum pseudo-tensor in the attached picture. Dirac is presumably integrating eq. (31.2) over the 4D "hypercylinder" defined by ##T_1 \le x^0 \le T_2## and ##\mathbf{|x|} \le R##, where ##R## is sufficiently large to include all the matter-energy fields in the system. Then \begin{align} 0 &= \int_V \left[ ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g}\, \right]_{,\nu} d^4 x = \int_{\partial V} ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g} \, dS_\nu \nonumber\\ &= \left(...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...

Similar threads

Replies
2
Views
1K
Replies
28
Views
6K
Replies
14
Views
2K
Replies
8
Views
2K
Replies
3
Views
1K
Replies
124
Views
16K
Replies
7
Views
2K
Replies
13
Views
2K
Back
Top